Mostrar el registro sencillo del ítem
dc.contributor.author | Pellicer-Valero, Oscar J. | es_ES |
dc.contributor.author | González-Pérez, Victor | es_ES |
dc.contributor.author | Casanova Ramón-Borja, Juan Luis | es_ES |
dc.contributor.author | Martín García, Isabel | es_ES |
dc.contributor.author | Barrios Benito, María | es_ES |
dc.contributor.author | Pelechano Gómez, Paula | es_ES |
dc.contributor.author | Rubio-Briones, José | es_ES |
dc.contributor.author | Rupérez Moreno, María José | es_ES |
dc.contributor.author | Martín-Guerrero, José D. | es_ES |
dc.date.accessioned | 2021-09-17T03:30:59Z | |
dc.date.available | 2021-09-17T03:30:59Z | |
dc.date.issued | 2021-01-18 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172659 | |
dc.description.abstract | [EN] Prostate segmentations are required for an ever-increasing number of medical applications, such as image-based lesion detection, fusion-guided biopsy and focal therapies. However, obtaining accurate segmentations is laborious, requires expertise and, even then, the inter-observer variability remains high. In this paper, a robust, accurate and generalizable model for Magnetic Resonance (MR) and three-dimensional (3D) Ultrasound (US) prostate image segmentation is proposed. It uses a densenet-resnet-based Convolutional Neural Network (CNN) combined with techniques such as deep supervision, checkpoint ensembling and Neural Resolution Enhancement. The MR prostate segmentation model was trained with five challenging and heterogeneous MR prostate datasets (and two US datasets), with segmentations from many different experts with varying segmentation criteria. The model achieves a consistently strong performance in all datasets independently (mean Dice Similarity Coefficient -DSC- above 0.91 for all datasets except for one), outperforming the inter-expert variability significantly in MR (mean DSC of 0.9099 vs. 0.8794). When evaluated on the publicly available Promise12 challenge dataset, it attains a similar performance to the best entries. In summary, the model has the potential of having a significant impact on current prostate procedures, undercutting, and even eliminating, the need of manual segmentations through improvements in terms of robustness, generalizability and output resolution | es_ES |
dc.description.sponsorship | This work has been partially supported by a doctoral grant of the Spanish Ministry of Innovation and Science, with reference FPU17/01993 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Prostate Segmentation | es_ES |
dc.subject | Magnetic Resonance and Ultrasound Images | es_ES |
dc.subject | Convolutional Neural Networks | es_ES |
dc.subject | Neural resolution enhancement | es_ES |
dc.subject | MR prostate imaging | es_ES |
dc.subject | US prostate imaging | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app11020844 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU17%2F01993/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Pellicer-Valero, OJ.; González-Pérez, V.; Casanova Ramón-Borja, JL.; Martín García, I.; Barrios Benito, M.; Pelechano Gómez, P.; Rubio-Briones, J.... (2021). Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks. Applied Sciences. 11(2):1-17. https://doi.org/10.3390/app11020844 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app11020844 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\427107 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Marra, G., Ploussard, G., Futterer, J., & Valerio, M. (2019). Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach? World Journal of Urology, 37(2), 277-287. doi:10.1007/s00345-018-02622-5 | es_ES |
dc.description.references | Ahdoot, M., Lebastchi, A. H., Turkbey, B., Wood, B., & Pinto, P. A. (2019). Contemporary treatments in prostate cancer focal therapy. Current Opinion in Oncology, 31(3), 200-206. doi:10.1097/cco.0000000000000515 | es_ES |
dc.description.references | Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386 | es_ES |
dc.description.references | Allen, P. D., Graham, J., Williamson, D. C., & Hutchinson, C. E. (s. f.). Differential Segmentation of the Prostate in MR Images Using Combined 3D Shape Modelling and Voxel Classification. 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006. doi:10.1109/isbi.2006.1624940 | es_ES |
dc.description.references | Freedman, D., Radke, R. J., Tao Zhang, Yongwon Jeong, Lovelock, D. M., & Chen, G. T. Y. (2005). Model-based segmentation of medical imagery by matching distributions. IEEE Transactions on Medical Imaging, 24(3), 281-292. doi:10.1109/tmi.2004.841228 | es_ES |
dc.description.references | Klein, S., van der Heide, U. A., Lips, I. M., van Vulpen, M., Staring, M., & Pluim, J. P. W. (2008). Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics, 35(4), 1407-1417. doi:10.1118/1.2842076 | es_ES |
dc.description.references | Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234-241. doi:10.1007/978-3-319-24574-4_28 | es_ES |
dc.description.references | He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.322 | es_ES |
dc.description.references | Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. doi:10.1109/tpami.2016.2572683 | es_ES |
dc.description.references | He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.90 | es_ES |
dc.description.references | Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV). doi:10.1109/3dv.2016.79 | es_ES |
dc.description.references | Zhu, Q., Du, B., Turkbey, B., Choyke, P. L., & Yan, P. (2017). Deeply-supervised CNN for prostate segmentation. 2017 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/ijcnn.2017.7965852 | es_ES |
dc.description.references | To, M. N. N., Vu, D. Q., Turkbey, B., Choyke, P. L., & Kwak, J. T. (2018). Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. International Journal of Computer Assisted Radiology and Surgery, 13(11), 1687-1696. doi:10.1007/s11548-018-1841-4 | es_ES |
dc.description.references | Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243 | es_ES |
dc.description.references | Zhu, Y., Wei, R., Gao, G., Ding, L., Zhang, X., Wang, X., & Zhang, J. (2018). Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. Journal of Magnetic Resonance Imaging, 49(4), 1149-1156. doi:10.1002/jmri.26337 | es_ES |
dc.description.references | Wang, Y., Ni, D., Dou, H., Hu, X., Zhu, L., Yang, X., … Wang, T. (2019). Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound. IEEE Transactions on Medical Imaging, 38(12), 2768-2778. doi:10.1109/tmi.2019.2913184 | es_ES |
dc.description.references | Lemaître, G., Martí, R., Freixenet, J., Vilanova, J. C., Walker, P. M., & Meriaudeau, F. (2015). Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Computers in Biology and Medicine, 60, 8-31. doi:10.1016/j.compbiomed.2015.02.009 | es_ES |
dc.description.references | Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken, B., … Madabhushi, A. (2014). Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Medical Image Analysis, 18(2), 359-373. doi:10.1016/j.media.2013.12.002 | es_ES |
dc.description.references | Zhu, Q., Du, B., & Yan, P. (2020). Boundary-Weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation. IEEE Transactions on Medical Imaging, 39(3), 753-763. doi:10.1109/tmi.2019.2935018 | es_ES |
dc.description.references | He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.123 | es_ES |
dc.description.references | Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. doi:10.1109/tkde.2009.191 | es_ES |
dc.description.references | Smith, L. N. (2017). Cyclical Learning Rates for Training Neural Networks. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv.2017.58 | es_ES |
dc.description.references | Abraham, N., & Khan, N. M. (2019). A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). doi:10.1109/isbi.2019.8759329 | es_ES |
dc.description.references | Lei, Y., Tian, S., He, X., Wang, T., Wang, B., Patel, P., … Yang, X. (2019). Ultrasound prostate segmentation based on multidirectional deeply supervised V‐Net. Medical Physics, 46(7), 3194-3206. doi:10.1002/mp.13577 | es_ES |
dc.description.references | Orlando, N., Gillies, D. J., Gyacskov, I., Romagnoli, C., D’Souza, D., & Fenster, A. (2020). Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Medical Physics, 47(6), 2413-2426. doi:10.1002/mp.14134 | es_ES |
dc.description.references | Karimi, D., Zeng, Q., Mathur, P., Avinash, A., Mahdavi, S., Spadinger, I., … Salcudean, S. E. (2019). Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images. Medical Image Analysis, 57, 186-196. doi:10.1016/j.media.2019.07.005 | es_ES |
dc.description.references | PROMISE12 Resultshttps://promise12.grand-challenge.org/ | es_ES |
dc.description.references | Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2020). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203-211. doi:10.1038/s41592-020-01008-z | es_ES |