- -

Design of New Up-conversion Systems for Anticancer Therapies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design of New Up-conversion Systems for Anticancer Therapies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Bosca Mayans, Francisco es_ES
dc.contributor.advisor Tormos Faus, Rosa Esperanza es_ES
dc.contributor.author Anaya González, Cristina es_ES
dc.date.accessioned 2021-09-17T06:38:57Z
dc.date.available 2021-09-17T06:38:57Z
dc.date.created 2021-06-18
dc.date.issued 2021-07-19 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172665
dc.description.abstract [ES] El cáncer es una de las principales causas de muerte a nivel mundial. Los tratamientos anticancerígenos generalmente usados tienen diversos efectos secundarios producidos por su baja especificidad. Esta es una de las razones por las que se sigue en continua búsqueda de nuevos tratamientos. Dentro de estas nuevas investigaciones se encuentra el extenso campo de la nanomedicina, es decir, el estudio de nuevos materiales a escala nanométrica. Esta permite reducir dichos efectos secundarios aumentando la selectividad y especificidad de los tratamientos. Dentro de los nanomateriales se encuentran las nanopartículas de upconversion que son capaces de absorber luz en el infrarrojo cercano y emitirla en la región ultravioleta-visible. Por otro lado, desde el principio de la historia de la medicina la luz se ha empleado como forma de tratamiento teniendo un rol muy importante. Un inconveniente para dichos tratamientos suele ser la necesidad de emplear luz de la región ultravioleta-visible, pues las biomoléculas son capaces de absorber y produce daño celular. En este contexto, la presente Tesis Doctoral se centra en el estudio de nuevas formas de tratamiento anticancerígeno combinando nanomedicina y luz. Para ello se han desarrollado nuevos fármacos fototóxicos y nuevos materiales capaces de ser activados mediante luz infrarroja cercana. En primer lugar, se sintetizaron nuevas fluoroquinolonas para explorar sus propiedades fototóxicas para su uso en fotoquimioterapia (Capítulo 3 de la Tesis). Se estudiaron las características fotofísicas y fotoquímicas de los nuevos compuestos, además de su capacidad para producir mayor fototoxicidad en las células en comparación con las fluoroquinolonas como la lomefloxacina mediante la aplicación de luz ultravioleta. En base a los resultados obtenidos se realizó un estudio para determinar las diferencias entre las interacciones de algunas fluoroquinolonas dihalogenadas, incluidas las comentadas anteriormente, y biomoléculas como ADN y proteínas. La reactividad de sus intermedios fotogenerados también se estudió en el Capítulo 4. Tras conocer en profundidad la capacidad fototóxica de los nuevos fármacos, en el Capítulo 5 se llevó a cabo el diseño de un nanosistema compuesto por fluoroquinolonas y nanopartículas de conversión ascendente. Se demostró la alta capacidad fototóxica de este nuevo nanosistema. De esta manera, se generó actividad fototóxica a partir de una fluoroquinolona sin el uso de luz ultravioleta Por otro lado, la formación de profármacos abre la puerta a la administración selectiva de fármacos contra el cáncer. Los profármacos consisten en la unión fotolábil de una molécula capaz de ser activada por la luz y el fármaco de interés. Sin embargo, un conocimiento profundo de las propiedades fotofísicas y fotoquímicas del fotodisparador y de los potenciales redox de ambos miembros de la diada puede ser crucial para obtener la fotoliberación deseada. Así, en el Capítulo 6, se destacó la relevancia de estos datos utilizando un profármaco formado por un derivado de cumarina como molécula fotoactivable y colchicina como fármaco. Finalmente, en el Capítulo 7 se exploró la síntesis de un nuevo nanosistema que contiene un profármaco formado por un derivado de cumarina unido al fármaco contra el cáncer clorambucilo y nanopartículas biocomatibles de conversión ascendente. La adición de albúmina de suero humano como recubrimiento de las nanopartículas cumple la doble función de obtener nanopartículas biocompatibles y ser el lugar de carga del profármaco. es_ES
dc.description.abstract [CA] El càncer és una de les principals causes de mort a nivell mundial. Els tractaments anticancerígens generalment usats tenen diversos efectes secundaris produïts per la seva baixa especificitat. Aquesta és una de les raons per les que se segueix en contínua recerca de nous tractaments. Dins d'aquestes noves investigacions es troba l'extens camp de la nanomedicina, és a dir, l'estudi de nous materials a escala nanomètrica. Aquesta permet reduir aquests efectes secundaris augmentant la selectivitat i especificitat dels tractaments. Dins dels nanomaterials es troben les nanopartícules de upconversion que són capaços d'absorbir llum en l'infraroig proper i emetre-la en la regió ultraviolada-visible. D'altra banda, des del principi de la història de la medicina la llum s'ha emprat com a forma de tractament tenint un paper molt important. Un inconvenient per aquests tractaments sol ser la necessitat d'emprar llum de la regió ultraviolada-visible, ja que les biomolècules són capaços d'absorbir-la i produïr dany cel·lular. En aquest context, la present Tesi Doctoral es centra en l'estudi de noves formes de tractament anticancerigen combinant nanomedicina i llum. Per això s'han desenvolupat nous fàrmacs fototòxics i nous materials capaços de ser activats mitjançant llum infraroja propera. En primer lloc, es van sintetitzar noves fluoroquinolones per explorar les seves propietats fototòxiques per al seu ús en fotoquimioteràpia (Capítol 3 de la Tesi). Es van estudiar les característiques fotofísiques i fotoquímiques dels nous compostos, a més de la seva capacitat per produir major fototoxicitat en les cèl·lules en comparació amb les fluoroquinolones com la lomefloxacina mitjançant l'aplicació de llum ultraviolada. En base als resultats obtinguts es va realitzar un estudi per determinar les diferències entre les interaccions d'algunes fluoroquinolones dihalogenades, incloses les comentades anteriorment, i biomolècules com ADN i proteïnes. La reactivitat de les seves intermedis fotogenerats també es va estudiar en el Capítol 4. Després de conèixer en profunditat la capacitat fototòxica dels nous fàrmacs, en el Capítol 5 es va dur a terme el disseny d'un nanosistema compost per fluoroquinolones i nanopartícules de upconversion. Es va demostrar l'alta capacitat fototòxica d'aquest nou nanosistema. D'aquesta manera, es va generar activitat fototòxica a partir d'una fluoroquinolona sense l'ús de llum ultraviolada D'altra banda, la formació de profàrmacs obre la porta a l'administració selectiva de fàrmacs contra el càncer. Els profàrmacs consisteixen en la unió fotolábil d'una molècula capaç de ser activada per la llum i el fàrmac d'interès. No obstant això, un coneixement profund de les propietats fotofísiques i fotoquímiques del fotodisparador i dels potencials redox de tots dos membres de la diada pot ser crucial per obtenir el fotoalliberament desitjada. Així, en el Capítol 6, es va destacar la rellevància d'aquestes dades utilitzant un profàrmac format per un derivat de cumarina com a molècula fotoactivable i colquicina com a fàrmac. Finalment, en el Capítol 7 es va explorar la síntesi d'un nou nanosistema que conté un profàrmac format per un derivat de cumarina unit a l'fàrmac contra el càncer clorambucilo i nanopartícules biocomatibles de upconversion. L'addició d'albúmina de sèrum humà com a recobriment de les nanopartícules compleix la doble funció d'obtenir nanopartícules biocompatibles i ser el lloc de càrrega del profàrmac. es_ES
dc.description.abstract [EN] Cancer is one of the leading causes of death worldwide. Generally used anticancer treatments have various side effects produced by their low specificity. This is one of the reasons why the search for new treatments continues. Within these new investigations is the extensive field of nanomedicine, which can be explained as the study of new materials on a nanometric scale. It can be translated in the reduction of these side effects by increasing the selectivity and specificity of the treatments. Among the nanomaterials are upconversion nanoparticles that are capable of absorbing light in the near infrared and emit it in the ultraviolet-visible region. On the other hand, since the beginning of the history of medicine, light has been used as a form of treatment, having a very important role. A drawback for such treatments is sometimes the need to use light from the ultraviolet-visible region since biomolecules are capable of absorbing and causing cell damage. In this context, this Doctoral Thesis focuses on the study of new forms of anticancer treatment combining nanomedicine and light. For this, new phototoxic drugs and new materials capable of being activated by near infrared light have been developed. First, new fluoroquinolones were synthesized to explore their phototoxic properties for using in photochemotherapy (Chapter 3 of the Thesis). The photophysical and photochemical characteristics of the new compounds were studied, in addition to their ability to produce greater phototoxicity in cells than fluoroquinolones such as lomefloxacin by applying ultraviolet light. Based on the results obtained, a study was carried out to determine the differences between the interactions of some dihalogenated fluoroquinolones including the above commented, and biomolecules such as DNA and proteins. The reactivity of their photo-generated intermediates was also studied in Chapter 4. After a deep knowledge of the phototoxic capacity of the new drugs, design of a nanosystem composed of fluoroquinolones and upconversion nanoparticles was carried out in Chapter 5. The high phototoxic capacity of this new nanosystem was demonstrated. In this way phototoxic activity was generated from a fluoroquinolone without the use of ultraviolet light. On the other hand, the formation of prodrugs opens a door to the selective administration of anticancer drugs. Prodrugs consist of the photolabile binding of a molecule capable of being activated by light and the drug of interest. However, a knowledge of the photophysical and photochemical properties of the phototrigger as well as the redox potentials of both members of the dyad can be crucial to obtain the desired photorelease. Thus, in Chapter 6, the relevance of these data was highlighted using a prodrug formed by a coumarin derivative as a photoactivatable molecule and colchicine as a drug. Finally, in Chapter 7 the synthesis of a new nanosystem containing a prodrug formed by a derivative of coumarin linked to the anticancer drug chlorambucil, and upconversion biocompatible nanoparticles was explored. The addition of human serum albumin as a coating for the nanoparticles fulfills the dual function of obtaining biocompatible nanoparticles and being the loading site for the prodrug. es_ES
dc.format.extent 273 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fluoroquinolona es_ES
dc.subject Cumarina es_ES
dc.subject Colchicina es_ES
dc.subject Clorambucilo es_ES
dc.subject Profármaco es_ES
dc.subject Nanopartículas de conversión ascendente es_ES
dc.subject Fototoxicidad es_ES
dc.subject Albúmina de suero humano (HSA) es_ES
dc.subject Nanosistemas biocompatibles es_ES
dc.subject Liberación de fármacos es_ES
dc.subject Fluoroquinolone es_ES
dc.subject Coumarin es_ES
dc.subject Colchicine es_ES
dc.subject Chlorambucil es_ES
dc.subject Prodrug es_ES
dc.subject Upconversion nanoparticles es_ES
dc.subject Phototoxicity es_ES
dc.subject Human Serum Albumin (HSA) es_ES
dc.subject Biocompatible nanosystem es_ES
dc.subject Drug release es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Design of New Up-conversion Systems for Anticancer Therapies es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/172665 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Anaya González, C. (2021). Design of New Up-conversion Systems for Anticancer Therapies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172665 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\11553 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem