- -

A new topology over the primary-like spectrum of a module

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new topology over the primary-like spectrum of a module

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rashedi, Fatemeh es_ES
dc.date.accessioned 2021-10-06T06:25:34Z
dc.date.available 2021-10-06T06:25:34Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173895
dc.description.abstract [EN] Let R be a commutative ring with identity and M a unitary R-module. The primary-like spectrum SpecL(M) is the collection of all primary-like submodules Q of  M, the recent generalization of primary ideals, such that M/Q is a primeful R-module. In this article, we topologies SpecL(M) with the patch-like topology, and show that when, SpecL(M) with the patch-like topology is a quasi-compact, Hausdorff, totally disconnected space. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Primary-like submodule es_ES
dc.subject Zariski topology es_ES
dc.subject Patch-like topology es_ES
dc.title A new topology over the primary-like spectrum of a module es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.13225
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rashedi, F. (2021). A new topology over the primary-like spectrum of a module. Applied General Topology. 22(2):251-257. https://doi.org/10.4995/agt.2021.13225 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.13225 es_ES
dc.description.upvformatpinicio 251 es_ES
dc.description.upvformatpfin 257 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\13225 es_ES
dc.description.references M. Alkan and Y. Tiraş, Projective modules and prime submodules, Czechoslovak Math. J. 56 (2006), 601-611. https://doi.org/10.1007/s10587-006-0041-5 es_ES
dc.description.references H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of a module and Zariski topologies, Comm. Algebra 38 (2010), 4461-4475. https://doi.org/10.1080/00927870903386510 es_ES
dc.description.references A. Azizi, Prime submodules and flat modules, Acta Math. Sin. (Eng. Ser.) 23 (2007), 47-152. https://doi.org/10.1007/s10114-005-0813-0 es_ES
dc.description.references A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174-178. https://doi.org/10.1016/0021-8693(81)90112-5 es_ES
dc.description.references J. Dauns, Prime modules, J. Reine Angew Math. 298 (1978), 156-181. https://doi.org/10.1515/crll.1978.298.156 es_ES
dc.description.references H. Fazaeli Moghimi and F. Rashedi, Zariski-like spaces of certain modules, Journal of Algebraic systems 1 (2013), 101-115. es_ES
dc.description.references K. R. Goodearl and R. B. Warfield, An Introduction to Non-commutative Noetherian Rings (Second Edition), London Math. Soc. Student Texts 16, 2004. https://doi.org/10.1017/CBO9780511841699 es_ES
dc.description.references M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 137 (1969), 43-60. https://doi.org/10.1090/S0002-9947-1969-0251026-X es_ES
dc.description.references C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math. 33 (2007), 125-143. es_ES
dc.description.references C. P. Lu, Saturations of submodules, Comm. Algebra 31 (2003), 2655-2673. https://doi.org/10.1081/AGB-120021886 es_ES
dc.description.references R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain. J. Math. 23 (1993), 1041-1062. https://doi.org/10.1216/rmjm/1181072540 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem