Mostrar el registro sencillo del ítem
dc.contributor.author | Rashedi, Fatemeh | es_ES |
dc.date.accessioned | 2021-10-06T06:25:34Z | |
dc.date.available | 2021-10-06T06:25:34Z | |
dc.date.issued | 2021-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/173895 | |
dc.description.abstract | [EN] Let R be a commutative ring with identity and M a unitary R-module. The primary-like spectrum SpecL(M) is the collection of all primary-like submodules Q of M, the recent generalization of primary ideals, such that M/Q is a primeful R-module. In this article, we topologies SpecL(M) with the patch-like topology, and show that when, SpecL(M) with the patch-like topology is a quasi-compact, Hausdorff, totally disconnected space. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Primary-like submodule | es_ES |
dc.subject | Zariski topology | es_ES |
dc.subject | Patch-like topology | es_ES |
dc.title | A new topology over the primary-like spectrum of a module | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2021.13225 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Rashedi, F. (2021). A new topology over the primary-like spectrum of a module. Applied General Topology. 22(2):251-257. https://doi.org/10.4995/agt.2021.13225 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2021.13225 | es_ES |
dc.description.upvformatpinicio | 251 | es_ES |
dc.description.upvformatpfin | 257 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\13225 | es_ES |
dc.description.references | M. Alkan and Y. Tiraş, Projective modules and prime submodules, Czechoslovak Math. J. 56 (2006), 601-611. https://doi.org/10.1007/s10587-006-0041-5 | es_ES |
dc.description.references | H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of a module and Zariski topologies, Comm. Algebra 38 (2010), 4461-4475. https://doi.org/10.1080/00927870903386510 | es_ES |
dc.description.references | A. Azizi, Prime submodules and flat modules, Acta Math. Sin. (Eng. Ser.) 23 (2007), 47-152. https://doi.org/10.1007/s10114-005-0813-0 | es_ES |
dc.description.references | A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174-178. https://doi.org/10.1016/0021-8693(81)90112-5 | es_ES |
dc.description.references | J. Dauns, Prime modules, J. Reine Angew Math. 298 (1978), 156-181. https://doi.org/10.1515/crll.1978.298.156 | es_ES |
dc.description.references | H. Fazaeli Moghimi and F. Rashedi, Zariski-like spaces of certain modules, Journal of Algebraic systems 1 (2013), 101-115. | es_ES |
dc.description.references | K. R. Goodearl and R. B. Warfield, An Introduction to Non-commutative Noetherian Rings (Second Edition), London Math. Soc. Student Texts 16, 2004. https://doi.org/10.1017/CBO9780511841699 | es_ES |
dc.description.references | M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 137 (1969), 43-60. https://doi.org/10.1090/S0002-9947-1969-0251026-X | es_ES |
dc.description.references | C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math. 33 (2007), 125-143. | es_ES |
dc.description.references | C. P. Lu, Saturations of submodules, Comm. Algebra 31 (2003), 2655-2673. https://doi.org/10.1081/AGB-120021886 | es_ES |
dc.description.references | R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain. J. Math. 23 (1993), 1041-1062. https://doi.org/10.1216/rmjm/1181072540 | es_ES |