Mostrar el registro sencillo del ítem
dc.contributor.author | Bhattacharjee, Papiya | es_ES |
dc.contributor.author | Knox, Michelle L. | es_ES |
dc.contributor.author | McGovern, Warren Wm. | es_ES |
dc.date.accessioned | 2021-10-06T06:55:42Z | |
dc.date.available | 2021-10-06T06:55:42Z | |
dc.date.issued | 2021-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/173903 | |
dc.description.abstract | [EN] It was demonstrated in [2] that the Alexandroff duplicate of the Čech-Stone compactification of the naturals is not extremally disconnected. The question was raised as to whether the Alexandroff duplicate of a non-discrete extremally disconnected space can ever be extremally disconnected. We answer this question in the affirmative; an example of van Douwen is significant. In a slightly different direction we also characterize when the Alexandroff duplicate of a space is a P-space as well as when it is an almost P-space. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Extremally disconnected space | es_ES |
dc.subject | Alexandroff duplicate | es_ES |
dc.subject | P-space | es_ES |
dc.title | Disconnection in the Alexandroff duplicate | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2021.14602 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Bhattacharjee, P.; Knox, ML.; Mcgovern, WW. (2021). Disconnection in the Alexandroff duplicate. Applied General Topology. 22(2):331-344. https://doi.org/10.4995/agt.2021.14602 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2021.14602 | es_ES |
dc.description.upvformatpinicio | 331 | es_ES |
dc.description.upvformatpfin | 344 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\14602 | es_ES |
dc.description.references | P. Alexandrov and P. Urysohn, Memoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam, 14 (1929), 1-96. | es_ES |
dc.description.references | K. Almontashery and L. Kalantan, Results about the Alexandroff duplicate space, Appl. Gen. Topol. 17, no. 2 (2016), 117-122. https://doi.org/10.4995/agt.2016.4521 | es_ES |
dc.description.references | A. V. Arkhangel'skii, Topological Function Spaces, Mathematics and Its Applications, 78, Springer, Netherlands, 1992. https://doi.org/10.1007/978-94-011-2598-7 | es_ES |
dc.description.references | G. Bezhanishvili, N. Bezhanishvili, J. Lucero-Bryan and J. van Mill, S4.3 and hereditarily extremally disconnected spaces, Georgian Mathematical Journal 22, no. 4 (2015), 469-475. https://doi.org/10.1515/gmj-2015-0041 | es_ES |
dc.description.references | A. Caserta and S. Watson, The Alexandroff duplicate and its subspaces, Appl. Gen. Topol. 8, no. 2 (2007), 187-205. https://doi.org/10.4995/agt.2007.1880 | es_ES |
dc.description.references | R. Engelking, On functions defined on Cartesian products, Fund. Math. 59 (1966), 221-231. https://doi.org/10.4064/fm-59-2-221-231 | es_ES |
dc.description.references | L. Gillman and M. Jerison, Rings of Continuous Functions, Graduate Texts in Mathametics, vol. 43, Springer Verlag, Berlin-Heidelberg-New York, 1976. | es_ES |
dc.description.references | E. van Douwen, Applications of maximal topologies, Topology Appl. 51 (1993), 125-139. https://doi.org/10.1016/0166-8641(93)90145-4 | es_ES |
dc.description.references | J. van Mill, Weak P-points in Čech-Stone compactifications, Trans. Amer. Math. Soc. 273 (1982), 657-678. https://doi.org/10.2307/1999934 | es_ES |
dc.description.references | J. L. Verner, Lonely points revisited, Comment. Math. Univ. Carolin. 54, no. 1 (2013), 105-110. | es_ES |