- -

Geometrical properties of the space of idempotent probability measures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Geometrical properties of the space of idempotent probability measures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kholturayev, Kholsaid es_ES
dc.date.accessioned 2021-10-06T07:40:33Z
dc.date.available 2021-10-06T07:40:33Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173924
dc.description.abstract [EN] Although traditional and idempotent mathematics are "parallel'', by an application of the category theory we show that objects obtained the similar rules over traditional and idempotent mathematics must not be "parallel''. At first we establish for a compact metric space X the spaces P(X) of probability measures and I(X) idempotent probability measures are homeomorphic ("parallelism''). Then we construct an example which shows that the constructions P and I form distinguished functors from each other ("parallelism'' negation). Further for a compact Hausdorff space X we establish that the hereditary normality of I3(X)\ X implies the metrizability of X. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Category es_ES
dc.subject Functor es_ES
dc.subject Compact Hausdorff space es_ES
dc.subject Idempotent measure es_ES
dc.title Geometrical properties of the space of idempotent probability measures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.15101
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kholturayev, K. (2021). Geometrical properties of the space of idempotent probability measures. Applied General Topology. 22(2):399-415. https://doi.org/10.4995/agt.2021.15101 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.15101 es_ES
dc.description.upvformatpinicio 399 es_ES
dc.description.upvformatpfin 415 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15101 es_ES
dc.description.references G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1955), 131-295. https://doi.org/10.5802/aif.53 es_ES
dc.description.references V. V. Fedorchuk, Fully closed mappings and their applications, Fundam. Prikl.Mat. 9, no. 4 (2003), 105-235. [J .Math. Sci. (New York) 136:5, 4201-4292 (2006)]. es_ES
dc.description.references V. V. Fedorchuk, On Katetov's theorem on the cube, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1989, no. 4, 93-96. es_ES
dc.description.references V. V. Fedorchuk and V. V. Filippov, General Topology. Basic Constructions (in Russian). - Moscow. Fizmatlit. - 2006. es_ES
dc.description.references R. Garner, Topological functors as total categories, Theory Appl. Categ. 29, no. 15 (2014), 406-422. es_ES
dc.description.references J. Gunawardena, Idempotency, Publ. of the Newton Institute, 11 (1998), Cambridge University Press, Cambridge, (Online publication date: May 2010) es_ES
dc.description.references E. Hopf, The partial differential equation equation ut + uux = µuxx, Comm. Pure Appl. Math. 3 (1950), 201-230. https://doi.org/10.1002/cpa.3160030302 es_ES
dc.description.references A. Ya. Ishmetov, On functor of idempotent probability measures with compact support, Uzbek. Mat. Zh. 2010, no. 1 (2010), 72-80. es_ES
dc.description.references M. Katetov, Complete normality of Cartesian products. Fund. Math. 35 (1948), 271-274. https://doi.org/10.4064/fm-35-1-271-274 es_ES
dc.description.references V. N. Kolokoltsov, Idempotent structures in optimization, J. Math. Sci. (New York) 104, no. 1 (2001), 847-880. https://doi.org/10.1023/A:1009514904187 es_ES
dc.description.references V. N. Kolokoltsov and V. P. Maslov, Idempotent analysis as a tool of control theory and optimal synthesis. 1, Funct. Anal. Appl. 23, no. 1 (1989), 111. https://doi.org/10.1007/BF01078568 es_ES
dc.description.references V. N. Kolokoltsov and V. P. Maslov, Idempotent analysis as a tool of control theory and optimal synthesis. 2, Funct. Anal. Appl. 23, no. 4 (1989), 300-307. https://doi.org/10.1007/BF01078944 es_ES
dc.description.references G. L. Litvinov and V. P. Maslov, Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics 377 (2005), 370 pp. https://doi.org/10.1090/conm/377 es_ES
dc.description.references G. L. Litvinov, V. P. Maslov and S. N. Sergeev (eds), Idempotent and tropical mathematics and problems of mathematical physics, 1 (2007), Moscow, 104 pp. es_ES
dc.description.references E. V. Shchepin, Functors and uncountable powers of compacta, Uspekhi Mat. Nauk 36, no. 3 (1981), 3-62. https://doi.org/10.1070/RM1981v036n03ABEH004247 es_ES
dc.description.references A. A. Zaitov and A. Ya. Ishmetov, Homotopy properties of the space If (X) of idempotent probability measures, Math. Notes 106, no. 3-4 (2019), 562-571. https://doi.org/10.1134/S0001434619090244 es_ES
dc.description.references A. A. Zaitov, Geometrical and topological properties of a subspace Pf (X) of probability measures (Russian), Russ Math. 63, no. 10 (2019), 24-32. https://doi.org/10.3103/S1066369X19100049 es_ES
dc.description.references A. A. Zaitov, On a metric on the space of idempotent probability measures, Applied General Topology 21, no. 1 (2020), 35-51. https://doi.org/10.4995/agt.2020.11865 es_ES
dc.description.references A. A. Zaitov and A. Ya. Ishmetov, On monad generating by the functor Iβ (Russian), Vestnik of National University of Uzbekistan 2 (2013), 61-64. es_ES
dc.description.references A. A. Zaitov and Kh. F. Kholturaev, On interrelation of the functors P of probability measures and I of idempotent probability measures (Russian), Uzbek Mathematical Journal 4 (2014), 36-45. es_ES
dc.description.references M. M. Zarichnyi, Spaces and maps of idempotent measures, Izv. Math. 74, no. 3 (2010), 481-499. https://doi.org/10.1070/IM2010v074n03ABEH002495 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem