Mostrar el registro sencillo del ítem
dc.contributor.author | Bisht, Ravindra K. | es_ES |
dc.contributor.author | Rakocević, Vladimir | es_ES |
dc.date.accessioned | 2021-10-06T07:43:59Z | |
dc.date.available | 2021-10-06T07:43:59Z | |
dc.date.issued | 2021-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/173926 | |
dc.description.abstract | [EN] A Meir-Keeler type fixed point theorem for a family of mappings is proved in Mengerprobabilistic metric space (Menger PM-space). We establish that completeness of the space isequivalent to fixed point property for a larger class of mappings that includes continuous as wellas discontinuous mappings. In addition to it, a probabilistic fixed point theorem satisfying (ϵ - δ)type non-expansive mappings is established. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Menger PM-spaces | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Almost orbital continuity | es_ES |
dc.subject | Non-expansive mapping | es_ES |
dc.title | On a probabilistic version of Meir-Keeler type fixed point theorem for a family of discontinuous operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2021.15561 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Bisht, RK.; Rakocević, V. (2021). On a probabilistic version of Meir-Keeler type fixed point theorem for a family of discontinuous operators. Applied General Topology. 22(2):435-446. https://doi.org/10.4995/agt.2021.15561 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2021.15561 | es_ES |
dc.description.upvformatpinicio | 435 | es_ES |
dc.description.upvformatpfin | 446 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\15561 | es_ES |
dc.description.references | R. K. Bisht and R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445 (2017), 1239-1242. https://doi.org/10.1016/j.jmaa.2016.02.053 | es_ES |
dc.description.references | R. K. Bisht, A probabilistic Meir-Keeler type fixed point theorem which characterizes metric completeness, Carpathain J. Math. 36, no. 2 (2020), 215-222. https://doi.org/10.37193/CJM.2020.02.05 | es_ES |
dc.description.references | R. K. Bisht and V. Rakočević, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory 19, no. 1 (2018), 57-64. https://doi.org/10.24193/fpt-ro.2018.1.06 | es_ES |
dc.description.references | R. K. Bisht and V. Rakočević, Discontinuity at fixed point and metric completeness, Appl. Gen. Topol. 21, no. 2 (2020), 349-362. https://doi.org/10.4995/agt.2020.13943 | es_ES |
dc.description.references | Lj. B. Ćirić, On contraction type mappings, Math. Balkanica 1 (1971), 52-57. | es_ES |
dc.description.references | T. Hicks and B. E. Rhoades, Fixed points and continuity for multivalued mappings, International J. Math. Math. Sci. 15 (1992), 15-30. https://doi.org/10.1155/S0161171292000024 | es_ES |
dc.description.references | D. S. Jaggi, Fixed point theorems for orbitally continuous functions, Indian J. Math. 19, no. 2 (1977), 113-119. | es_ES |
dc.description.references | G. F. Jungck, Generalizations of continuity in the context of proper orbits and fixed pont theory, Topol. Proc. 37 (2011), 1-15. | es_ES |
dc.description.references | A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. https://doi.org/10.1016/0022-247X(69)90031-6 | es_ES |
dc.description.references | K. Menger, Statistical metric, Proc. Nat. Acad. Sci. USA 28 (1942), 535-537. https://doi.org/10.1073/pnas.28.12.535 | es_ES |
dc.description.references | A. Pant and R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31, no. 11 (2017), 3501-3506. https://doi.org/10.2298/FIL1711501P | es_ES |
dc.description.references | A. Pant, R. P. Pant and M. C. Joshi, Caristi type and Meir-Keeler type fixed point theorems, Filomat 33, no. 12 (2019), 3711-3721. https://doi.org/10.2298/FIL1912711P | es_ES |
dc.description.references | A. Pant, R. P. Pant and W. Sintunavarat, Analytical Meir-Keeler type contraction mappings and equivalent characterizations, RACSAM 37 (2021), 115. https://doi.org/10.1007/s13398-020-00939-8 | es_ES |
dc.description.references | R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284-289. https://doi.org/10.1006/jmaa.1999.6560 | es_ES |
dc.description.references | R. P. Pant, N. Y. Özgür and N. Tac s, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. 43, no. 1 (2020), 499-517. https://doi.org/10.1007/s40840-018-0698-6 | es_ES |
dc.description.references | R. P. Pant, A. Pant, R. M. Nikolić and S. N. Ješić, A characterization of completeness of Menger PM-spaces, J. Fixed Point Theory Appl. 21, (2019) 90. https://doi.org/10.1007/s11784-019-0732-9 | es_ES |
dc.description.references | R. P. Pant, N. Y. Özgür and N. Taş, Discontinuity at fixed points with applications, Bulletin of the Belgian Mathematical Society-Simon Stevin 25, no. 4 (2019), 571-589. https://doi.org/10.36045/bbms/1576206358 | es_ES |
dc.description.references | O. Popescu, A new type of contractions that characterize metric completeness, Carpathian J. Math. 31, no. 3 (2015), 381-387. https://doi.org/10.37193/CJM.2015.03.15 | es_ES |
dc.description.references | B. E. Rhoades, Contractive definitions and continuity, Contemporary Mathematics 72 (1988), 233-245. https://doi.org/10.1090/conm/072/956495 | es_ES |
dc.description.references | S. Romaguera, w-distances on fuzzy metric spaces and fixed points, Mathematics 8, no. 11 (2020), 1909. https://doi.org/10.3390/math8111909 | es_ES |
dc.description.references | B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 415-417. https://doi.org/10.2140/pjm.1960.10.313 | es_ES |
dc.description.references | B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, Elsevier 1983. | es_ES |
dc.description.references | V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings in PM-spaces, Math. System Theory 6 (1972), 97-102. https://doi.org/10.1007/BF01706080 | es_ES |
dc.description.references | P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math. 80 (1975), 325-330. https://doi.org/10.1007/BF01472580 | es_ES |
dc.description.references | T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136, no. 5 (2008), 1861-1869. https://doi.org/10.1090/S0002-9939-07-09055-7 | es_ES |
dc.description.references | N. Taş and N. Y. Özgür, A new contribution to discontinuity at fixed point, Fixed Point Theory 20, no. 2 (2019), 715-728. https://doi.org/10.24193/fpt-ro.2019.2.47 | es_ES |