- -

On a probabilistic version of Meir-Keeler type fixed point theorem for a family of discontinuous operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On a probabilistic version of Meir-Keeler type fixed point theorem for a family of discontinuous operators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bisht, Ravindra K. es_ES
dc.contributor.author Rakocević, Vladimir es_ES
dc.date.accessioned 2021-10-06T07:43:59Z
dc.date.available 2021-10-06T07:43:59Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173926
dc.description.abstract [EN] A Meir-Keeler type fixed point theorem for a family of mappings is proved in Mengerprobabilistic metric space (Menger PM-space). We establish that completeness of the space isequivalent to fixed point property for a larger class of mappings that includes continuous as wellas discontinuous mappings. In addition to it, a probabilistic fixed point theorem satisfying (ϵ - δ)type non-expansive mappings is established. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Menger PM-spaces es_ES
dc.subject Fixed point es_ES
dc.subject Almost orbital continuity es_ES
dc.subject Non-expansive mapping es_ES
dc.title On a probabilistic version of Meir-Keeler type fixed point theorem for a family of discontinuous operators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.15561
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bisht, RK.; Rakocević, V. (2021). On a probabilistic version of Meir-Keeler type fixed point theorem for a family of discontinuous operators. Applied General Topology. 22(2):435-446. https://doi.org/10.4995/agt.2021.15561 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.15561 es_ES
dc.description.upvformatpinicio 435 es_ES
dc.description.upvformatpfin 446 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15561 es_ES
dc.description.references R. K. Bisht and R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445 (2017), 1239-1242. https://doi.org/10.1016/j.jmaa.2016.02.053 es_ES
dc.description.references R. K. Bisht, A probabilistic Meir-Keeler type fixed point theorem which characterizes metric completeness, Carpathain J. Math. 36, no. 2 (2020), 215-222. https://doi.org/10.37193/CJM.2020.02.05 es_ES
dc.description.references R. K. Bisht and V. Rakočević, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory 19, no. 1 (2018), 57-64. https://doi.org/10.24193/fpt-ro.2018.1.06 es_ES
dc.description.references R. K. Bisht and V. Rakočević, Discontinuity at fixed point and metric completeness, Appl. Gen. Topol. 21, no. 2 (2020), 349-362. https://doi.org/10.4995/agt.2020.13943 es_ES
dc.description.references Lj. B. Ćirić, On contraction type mappings, Math. Balkanica 1 (1971), 52-57. es_ES
dc.description.references T. Hicks and B. E. Rhoades, Fixed points and continuity for multivalued mappings, International J. Math. Math. Sci. 15 (1992), 15-30. https://doi.org/10.1155/S0161171292000024 es_ES
dc.description.references D. S. Jaggi, Fixed point theorems for orbitally continuous functions, Indian J. Math. 19, no. 2 (1977), 113-119. es_ES
dc.description.references G. F. Jungck, Generalizations of continuity in the context of proper orbits and fixed pont theory, Topol. Proc. 37 (2011), 1-15. es_ES
dc.description.references A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. https://doi.org/10.1016/0022-247X(69)90031-6 es_ES
dc.description.references K. Menger, Statistical metric, Proc. Nat. Acad. Sci. USA 28 (1942), 535-537. https://doi.org/10.1073/pnas.28.12.535 es_ES
dc.description.references A. Pant and R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31, no. 11 (2017), 3501-3506. https://doi.org/10.2298/FIL1711501P es_ES
dc.description.references A. Pant, R. P. Pant and M. C. Joshi, Caristi type and Meir-Keeler type fixed point theorems, Filomat 33, no. 12 (2019), 3711-3721. https://doi.org/10.2298/FIL1912711P es_ES
dc.description.references A. Pant, R. P. Pant and W. Sintunavarat, Analytical Meir-Keeler type contraction mappings and equivalent characterizations, RACSAM 37 (2021), 115. https://doi.org/10.1007/s13398-020-00939-8 es_ES
dc.description.references R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284-289. https://doi.org/10.1006/jmaa.1999.6560 es_ES
dc.description.references R. P. Pant, N. Y. Özgür and N. Tac s, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. 43, no. 1 (2020), 499-517. https://doi.org/10.1007/s40840-018-0698-6 es_ES
dc.description.references R. P. Pant, A. Pant, R. M. Nikolić and S. N. Ješić, A characterization of completeness of Menger PM-spaces, J. Fixed Point Theory Appl. 21, (2019) 90. https://doi.org/10.1007/s11784-019-0732-9 es_ES
dc.description.references R. P. Pant, N. Y. Özgür and N. Taş, Discontinuity at fixed points with applications, Bulletin of the Belgian Mathematical Society-Simon Stevin 25, no. 4 (2019), 571-589. https://doi.org/10.36045/bbms/1576206358 es_ES
dc.description.references O. Popescu, A new type of contractions that characterize metric completeness, Carpathian J. Math. 31, no. 3 (2015), 381-387. https://doi.org/10.37193/CJM.2015.03.15 es_ES
dc.description.references B. E. Rhoades, Contractive definitions and continuity, Contemporary Mathematics 72 (1988), 233-245. https://doi.org/10.1090/conm/072/956495 es_ES
dc.description.references S. Romaguera, w-distances on fuzzy metric spaces and fixed points, Mathematics 8, no. 11 (2020), 1909. https://doi.org/10.3390/math8111909 es_ES
dc.description.references B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 415-417. https://doi.org/10.2140/pjm.1960.10.313 es_ES
dc.description.references B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, Elsevier 1983. es_ES
dc.description.references V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings in PM-spaces, Math. System Theory 6 (1972), 97-102. https://doi.org/10.1007/BF01706080 es_ES
dc.description.references P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math. 80 (1975), 325-330. https://doi.org/10.1007/BF01472580 es_ES
dc.description.references T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136, no. 5 (2008), 1861-1869. https://doi.org/10.1090/S0002-9939-07-09055-7 es_ES
dc.description.references N. Taş and N. Y. Özgür, A new contribution to discontinuity at fixed point, Fixed Point Theory 20, no. 2 (2019), 715-728. https://doi.org/10.24193/fpt-ro.2019.2.47 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem