- -

Intrinsic characterizations of C-realcompact spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Intrinsic characterizations of C-realcompact spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Acharyya, Sudip Kumar es_ES
dc.contributor.author Bharati, Rakesh es_ES
dc.contributor.author Deb Ray, Atasi es_ES
dc.date.accessioned 2021-10-07T07:06:32Z
dc.date.available 2021-10-07T07:06:32Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/174080
dc.description.abstract [EN] c-realcompact spaces are introduced by Karamzadeh and Keshtkar in Quaest. Math. 41, no. 8 (2018), 1135-1167. We offer a characterization of these spaces X via c-stable family of closed sets in X by showing that  X is c-realcompact if and only if each c-stable family of closed sets in X with finite intersection property has nonempty intersection. This last condition which makes sense for an arbitrary topological space can be taken as an alternative definition of a c-realcompact space. We show that each topological space can be extended as a dense subspace to a c-realcompact space with some desired extension properties. An allied class of spaces viz CP-compact spaces akin to that of c-realcompact spaces are introduced. The paper ends after examining how far a known class of c-realcompact spaces could be realized as CP-compact for appropriately chosen ideal P of closed sets in X. es_ES
dc.description.sponsorship University Grand Commission, New Delhi, research fellowship (F. No. 16-9 (June 2018)/2019 (NET/CSIR)) es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject C-realcompact spaces es_ES
dc.subject Banaschewski compactification es_ES
dc.subject C-stable family of closed sets es_ES
dc.subject Ideals of closed sets es_ES
dc.subject Initially θ-compact spaces es_ES
dc.title Intrinsic characterizations of C-realcompact spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.13696
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Acharyya, SK.; Bharati, R.; Deb Ray, A. (2021). Intrinsic characterizations of C-realcompact spaces. Applied General Topology. 22(2):295-302. https://doi.org/10.4995/agt.2021.13696 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.13696 es_ES
dc.description.upvformatpinicio 295 es_ES
dc.description.upvformatpfin 302 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\13696 es_ES
dc.contributor.funder University of Delhi es_ES
dc.description.references S. K. Acharyya and S. K. Ghosh, A note on functions in C(X) with support lying on an ideal of closed subsets of X, Topology Proc. 40 (2012), 297-301. es_ES
dc.description.references S. K. Acharyya and S. K. Ghosh, Functions in C(X) with support lying on a class of subsets of X, Topology Proc. 35 (2010), 127-148. es_ES
dc.description.references S. K. Acharyya, R. Bharati and A. Deb Ray, Rings and subrings of continuous functions with countable range, Queast. Math., to appear. https://doi.org/10.2989/16073606.2020.1752322 es_ES
dc.description.references F. Azarpanah, O. A. S. Karamzadeh, Z. Keshtkar and A. R. Olfati, On maximal ideals of $C_c(X)$ and the uniformity of its localizations, Rocky Mountain J. Math. 48, no. 2 (2018), 345-384. https://doi.org/10.1216/RMJ-2018-48-2-345 es_ES
dc.description.references P. Bhattacherjee, M. L. Knox and W. W. Mcgovern, The classical ring of quotients of $C_c(X)$, Appl. Gen. Topol. 15, no. 2 (2014), 147-154. https://doi.org/10.4995/agt.2014.3181 es_ES
dc.description.references L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand Reinhold co., New York, 1960. https://doi.org/10.1007/978-1-4615-7819-2 es_ES
dc.description.references M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, On the functionally countable subalgebras of C(X), Rend. Sem. Mat. Univ. Padova. 129 (2013), 47-69. https://doi.org/10.4171/RSMUP/129-4 es_ES
dc.description.references O. A. S. Karamzadeh and Z. Keshtkar, On c-realcompact spaces, Queast. Math. 41, no. 8 (2018), 1135-1167. https://doi.org/10.2989/16073606.2018.1441919 es_ES
dc.description.references M. Mandelkar, Supports of continuous functions, Trans. Amer. Math. Soc. 156 (1971), 73-83. https://doi.org/10.1090/S0002-9947-1971-0275367-4 es_ES
dc.description.references R. M. Stephenson Jr, Initially k-compact and related spaces, in: Handbook of Set-Theoretic Topology, ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam, North-Holland, (1984) 603-632. https://doi.org/10.1016/B978-0-444-86580-9.50016-1 es_ES
dc.description.references A. Veisi, $e_c$-filters and $e_c$-ideals in the functionally countable subalgebra of $C^*(X)$, Appl. Gen. Topol. 20, no. 2 (2019), 395-405. https://doi.org/10.4995/agt.2019.11524 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem