Mostrar el registro sencillo del ítem
dc.contributor.author | Acharyya, Sudip Kumar | es_ES |
dc.contributor.author | Bharati, Rakesh | es_ES |
dc.contributor.author | Deb Ray, Atasi | es_ES |
dc.date.accessioned | 2021-10-07T07:06:32Z | |
dc.date.available | 2021-10-07T07:06:32Z | |
dc.date.issued | 2021-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/174080 | |
dc.description.abstract | [EN] c-realcompact spaces are introduced by Karamzadeh and Keshtkar in Quaest. Math. 41, no. 8 (2018), 1135-1167. We offer a characterization of these spaces X via c-stable family of closed sets in X by showing that X is c-realcompact if and only if each c-stable family of closed sets in X with finite intersection property has nonempty intersection. This last condition which makes sense for an arbitrary topological space can be taken as an alternative definition of a c-realcompact space. We show that each topological space can be extended as a dense subspace to a c-realcompact space with some desired extension properties. An allied class of spaces viz CP-compact spaces akin to that of c-realcompact spaces are introduced. The paper ends after examining how far a known class of c-realcompact spaces could be realized as CP-compact for appropriately chosen ideal P of closed sets in X. | es_ES |
dc.description.sponsorship | University Grand Commission, New Delhi, research fellowship (F. No. 16-9 (June 2018)/2019 (NET/CSIR)) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | C-realcompact spaces | es_ES |
dc.subject | Banaschewski compactification | es_ES |
dc.subject | C-stable family of closed sets | es_ES |
dc.subject | Ideals of closed sets | es_ES |
dc.subject | Initially θ-compact spaces | es_ES |
dc.title | Intrinsic characterizations of C-realcompact spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2021.13696 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Acharyya, SK.; Bharati, R.; Deb Ray, A. (2021). Intrinsic characterizations of C-realcompact spaces. Applied General Topology. 22(2):295-302. https://doi.org/10.4995/agt.2021.13696 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2021.13696 | es_ES |
dc.description.upvformatpinicio | 295 | es_ES |
dc.description.upvformatpfin | 302 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\13696 | es_ES |
dc.contributor.funder | University of Delhi | es_ES |
dc.description.references | S. K. Acharyya and S. K. Ghosh, A note on functions in C(X) with support lying on an ideal of closed subsets of X, Topology Proc. 40 (2012), 297-301. | es_ES |
dc.description.references | S. K. Acharyya and S. K. Ghosh, Functions in C(X) with support lying on a class of subsets of X, Topology Proc. 35 (2010), 127-148. | es_ES |
dc.description.references | S. K. Acharyya, R. Bharati and A. Deb Ray, Rings and subrings of continuous functions with countable range, Queast. Math., to appear. https://doi.org/10.2989/16073606.2020.1752322 | es_ES |
dc.description.references | F. Azarpanah, O. A. S. Karamzadeh, Z. Keshtkar and A. R. Olfati, On maximal ideals of $C_c(X)$ and the uniformity of its localizations, Rocky Mountain J. Math. 48, no. 2 (2018), 345-384. https://doi.org/10.1216/RMJ-2018-48-2-345 | es_ES |
dc.description.references | P. Bhattacherjee, M. L. Knox and W. W. Mcgovern, The classical ring of quotients of $C_c(X)$, Appl. Gen. Topol. 15, no. 2 (2014), 147-154. https://doi.org/10.4995/agt.2014.3181 | es_ES |
dc.description.references | L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand Reinhold co., New York, 1960. https://doi.org/10.1007/978-1-4615-7819-2 | es_ES |
dc.description.references | M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, On the functionally countable subalgebras of C(X), Rend. Sem. Mat. Univ. Padova. 129 (2013), 47-69. https://doi.org/10.4171/RSMUP/129-4 | es_ES |
dc.description.references | O. A. S. Karamzadeh and Z. Keshtkar, On c-realcompact spaces, Queast. Math. 41, no. 8 (2018), 1135-1167. https://doi.org/10.2989/16073606.2018.1441919 | es_ES |
dc.description.references | M. Mandelkar, Supports of continuous functions, Trans. Amer. Math. Soc. 156 (1971), 73-83. https://doi.org/10.1090/S0002-9947-1971-0275367-4 | es_ES |
dc.description.references | R. M. Stephenson Jr, Initially k-compact and related spaces, in: Handbook of Set-Theoretic Topology, ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam, North-Holland, (1984) 603-632. https://doi.org/10.1016/B978-0-444-86580-9.50016-1 | es_ES |
dc.description.references | A. Veisi, $e_c$-filters and $e_c$-ideals in the functionally countable subalgebra of $C^*(X)$, Appl. Gen. Topol. 20, no. 2 (2019), 395-405. https://doi.org/10.4995/agt.2019.11524 | es_ES |