- -

Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Dominguez, X es_ES
dc.contributor.author Marco-Jiménez, Francisco es_ES
dc.contributor.author Peñaranda, D.S. es_ES
dc.contributor.author Diretto, Gianfranco es_ES
dc.contributor.author García-Carpintero, Víctor es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.contributor.author Vicente Antón, José Salvador es_ES
dc.date.accessioned 2021-11-05T10:17:55Z
dc.date.available 2021-11-05T10:17:55Z
dc.date.issued 2020-07-09 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176080
dc.description.abstract [EN] The advent of assisted reproductive technologies (ART) in mammals involved an extraordinary change in the environment where the beginning of a new organism takes place. Under in vitro conditions, in which ART is currently being performed, it likely fails to mimic optimal in vivo conditions. This suboptimal environment could mediate in the natural developmental trajectory of the embryo, inducing lasting effects until later life stages that may be inherited by subsequent generations (transgenerational effects). Therefore, we evaluated the potential transgenerational effects of embryo exposure to the cryopreservation-transfer procedure in a rabbit model on the offspring phenotype, molecular physiology of the liver (transcriptome and metabolome) and reproductive performance during three generations (F1, F2 and F3). The results showed that, compared to naturally-conceived animals (NC group), progeny generated after embryo exposure to the cryopreservation-transfer procedure (VT group) exhibited lower body growth, which incurred lower adult body weight in the F1 (direct effects), F2 (intergenerational effects) and F3 (transgenerational effects) generations. Furthermore, VT animals showed intergenerational effects on heart weight and transgenerational effects on liver weight. The RNA-seq data of liver tissue revealed 642 differentially expressed transcripts (DETs) in VT animals from the F1 generation. Of those, 133 were inherited from the F2 and 120 from the F3 generation. Accordingly, 151, 190 and 159 differentially accumulated metabolites (DAMs) were detected from the F1, F2 and F3, respectively. Moreover, targeted metabolomics analysis demonstrated that transgenerational effects were mostly presented in the non-polar fraction. Functional analysis of molecular data suggests weakened zinc and fatty acid metabolism across the generations, associated with alterations in a complex molecular network affecting global hepatic metabolism that could be associated with the phenotype of VT animals. However, these VT animals showed proper reproductive performance, which verified a functional health status. In conclusion, our results establish the long-term transgenerational effects following a vitrified embryo transfer procedure. We showed that the VT phenotype could be the result of the manifestation of embryonic developmental plasticity in response to the stressful conditions during ART procedures. es_ES
dc.description.sponsorship Funding from the Ministry of Economy, Industry and Competitiveness (Research project: AGL2014-53405-C2-1-P) and Generalitat Valenciana (Research project: Prometeo II 2014/036) is acknowledged. X.G.D. was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429). English text version was revised by N. Macowan English Language Service. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification BIOLOGIA ANIMAL es_ES
dc.title Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-020-68195-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEOII%2F2014%2F036//Crioconservación de óvulos y embriones. Cambios epigenéticos y repercusiones transcripcionales y proteómicas / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINISTERIO DE ECONOMIA Y EMPRESA//AGL2014-53405-C2-1-P//MEJORA GENETICA DEL CONEJO DE CARNE:RESPUESTA A LA SELECCION Y SU EFECTO SOBRE LA REPRODUCCION, ALIMENTACION Y SALUD UTILIZANDO UNA POBLACION CONTROL CRIOCONSERVADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072429//AYUDA CONTRATO PREDOCTORAL PARA LA FORMACION DE DOCTORES-GARCIA DOMINGUEZ/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Garcia-Dominguez, X.; Marco-Jiménez, F.; Peñaranda, D.; Diretto, G.; García-Carpintero, V.; Cañizares Sales, J.; Vicente Antón, JS. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports. 10(1):1-15. https://doi.org/10.1038/s41598-020-68195-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-020-68195-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32647175 es_ES
dc.identifier.pmcid PMC7347584 es_ES
dc.relation.pasarela S\414277 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.description.references Canovas, S., Ross, P. J., Kelsey, G. & Coy, P. DNA methylation in embryo development: epigenetic impact of ART (assisted reproductive technologies). BioEssays 39, 1 (2017). es_ES
dc.description.references García-Martínez, S. et al. Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. Mol. Hum. Reprod. 24, 260–270 (2018). es_ES
dc.description.references Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N. & Cheong, Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum. Reprod. Update 24, 15–34 (2018). es_ES
dc.description.references Roseboom, T. J. Developmental plasticity and its relevance to assisted human reproduction. Hum. Reprod. 33, 546–552 (2018). es_ES
dc.description.references Feuer, S. & Rinaudo, P. From embryos to adults: a DOHaD perspective on in vitro fertilization and other assisted reproductive technologies. Healthcare 4, E51 (2016). es_ES
dc.description.references Zandstra, H. et al. Association of culture medium with growth, weight and cardiovascular development of IVF children at the age of 9 years. Hum. Reprod. 33, 1645–1656 (2018). es_ES
dc.description.references Chen, M. & Heilbronn, L. K. The health outcomes of human offspring conceived by assisted reproductive technologies (ART). J. Dev. Orig. Health Dis. 8, 388–402 (2017). es_ES
dc.description.references Chen, L. et al. Birth prevalence of congenital malformations in singleton pregnancies resulting from in vitro fertilization/intracytoplasmic sperm injection worldwide: a systematic review and meta-analysis. Arch. Gynecol. Obstet. 297, 1115–1130 (2018). es_ES
dc.description.references Zhang, W. Y. et al. Vascular health of children conceived via in vitro fertilization. J. Pediatr. 214, 47–53 (2019). es_ES
dc.description.references Guo, X. Y. et al. Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertil. Steril. 107, 622–631 (2017). es_ES
dc.description.references Vrooman, L. A. & Bartolomei, M. S. Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reprod. Toxicol. 68, 72–84 (2017). es_ES
dc.description.references Duranthon, V. & Chavatte-Palmer, P. Long term effects of ART: What do animals tell us?. Mol. Reprod. Dev. 85, 348–368 (2018). es_ES
dc.description.references Ramos-Ibeas, P. et al. Embryo responses to stress induced by assisted reproductive technologies. Mol. Reprod. Dev. 86, 1292–1306 (2019). es_ES
dc.description.references Feuer, S. K. et al. Transcriptional signatures throughout development: the effects of mouse embryo manipulation in vitro. Reproduction 153, 107–122 (2017). es_ES
dc.description.references Feuer, S. K. & Rinaudo, P. F. Physiological, metabolic and transcriptional postnatal phenotypes of in vitro fertilization (IVF) in the mouse. J. Dev. Orig. Health Dis. 8, 403–410 (2017). es_ES
dc.description.references Sparks, A. E. T. Human embryo cryopreservation-methods, timing, and other considerations for optimizing an embryo cryopreservation program. Semin. Reprod. Med. 33, 128–144 (2015). es_ES
dc.description.references Dulioust, E. et al. Long-term effects of embryo freezing in mice. Proc. Natl. Acad. Sci. USA. 92, 589–593 (1995). es_ES
dc.description.references Auroux, M., Cerutti, I., Ducot, B. & Loeuillet, A. Is embryo-cryopreservation really neutral? A new long-term effect of embryo freezing in mice: protection of adults from induced cancer according to strain and sex. Reprod. Toxicol. 18, 813–818 (2004). es_ES
dc.description.references Vicente, J. S. et al. Rabbit morula vitrification reduces early foetal growth and increases losses throughout gestation. Cryobiology 67, 321–326 (2013). es_ES
dc.description.references Saenz-De-Juano, M. D. et al. Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. Reproduction https://doi.org/10.1530/REP-14-0019 (2014). es_ES
dc.description.references Saenz-de-Juano, M. D., Vicente, J. S., Hollung, K. & Marco-Jiménez, F. Effect of embryo vitrification on rabbit foetal placenta proteome during pregnancy. PLoS ONE 147, 789–801 (2015). es_ES
dc.description.references Berntsen, S. & Pinborg, A. Large for gestational age and macrosomia in singletons born after frozen/thawed embryo transfer (FET) in assisted reproductive technology (ART). Birth Defects Res. 110, 630–643 (2018). es_ES
dc.description.references Maheshwari, A. et al. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer?. Hum. Reprod. Update 24, 35–58 (2018). es_ES
dc.description.references Garcia-Dominguez, X., Vicente, J. S. & Marco-Jiménez, F. Developmental plasticity in response to embryo cryopreservation: the importance of the vitrification device in rabbits. Animals 10, 804 (2020). es_ES
dc.description.references Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P. & Vicente, J. S. Minimally invasive embryo transfer and embryo vitrification at the optimal embryo stage in rabbit model. J. Vis. Exp. 147, e58055 (2019). es_ES
dc.description.references Garcia-Dominguez, X. et al. Long-term phenotypic effects following vitrified-thawed embryo transfer in a rabbit model. bioRxiv https://doi.org/10.1101/410514 (2018). es_ES
dc.description.references Ventura-Juncá, P. et al. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations: scientific and bioethical implications for IVF in humans. Biol. Res. 48, 68 (2015). es_ES
dc.description.references Calle, A. et al. Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology 77, 785–793 (2012). es_ES
dc.description.references Calle, A. et al. Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male Offspring1. Biol. Reprod. 87, 1–9 (2012). es_ES
dc.description.references Mahsoudi, B., Li, A. & O’Neill, C. Assessment of the long-term and transgenerational consequences of perturbing preimplantation embryo development in Mice1. Biol. Reprod. 77, 889–896 (2007). es_ES
dc.description.references Servick, K. Unsettled questions trail IVF’s success. Science (80-) 345, 744–746 (2014). es_ES
dc.description.references Cifre, J., Baselga, M., Gómez, E. A. & De La Luz, G. M. Effect of embryo cryopreservation techniques on reproductive and growth traits in rabbits. Anim. Res. 48, 15–24 (1999). es_ES
dc.description.references Lavara, R., Baselga, M., Marco-Jiménez, F. & Vicente, J. S. Embryo vitrification in rabbits: consequences for progeny growth. Theriogenology 84, 674–680 (2015). es_ES
dc.description.references Nusbaumer, D., Da Cunha, L. M. & Wedekind, C. Sperm cryopreservation reduces offspring growth. Proc. R. Soc. B Biol. Sci. 286, 20191644 (2019). es_ES
dc.description.references Feuer, S. K. et al. Sexually dimorphic effect of In Vitro Fertilization (IVF) on adult mouse fat and liver metabolomes. Endocrinology 155, 4554–4567 (2014). es_ES
dc.description.references Feuer, S. K. et al. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology 155, 1956–1969 (2014). es_ES
dc.description.references Velazquez, M. A. et al. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 590–600 (2018). es_ES
dc.description.references Fernández-Gonzalez, R. et al. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl. Acad. Sci. U. S. A. 101, 5880–5885 (2004). es_ES
dc.description.references Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 9, 2973 (2018). es_ES
dc.description.references Perez, M. F. & Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat. Cell Biol. 21, 143–151 (2019). es_ES
dc.description.references Lavara, R., Baselga, M., Marco-Jiménez, F. & Vicente, J. S. Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology 81, 988–992 (2014). es_ES
dc.description.references Rexhaj, E. et al. Mice generated by in vitro fertilization exhibit vascular dysfunction and shortened life span. J. Clin. Invest. 123, 5052–5060 (2013). es_ES
dc.description.references Møller, S. & Bernardi, M. Interactions of the heart and the liver. Eur. Heart J. 34, 2804–2811 (2013). es_ES
dc.description.references Hyatt, M. A., Budge, H. & Symonds, M. E. Early developmental influences on hepatic organogenesis. Organogenesis 4, 170–175 (2008). es_ES
dc.description.references Skinner, M. K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol. 25, 2–6 (2008). es_ES
dc.description.references Hajkova, P. Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos. Trans. R. Soc. B Biol. Sci. 366, 2266–2273 (2011). es_ES
dc.description.references Lacal, I. & Ventura, R. Epigenetic inheritance: concepts, mechanisms and perspectives. Front. Mol. Neurosci. 11, 292 (2018). es_ES
dc.description.references Fraser, R. & Lin, C. J. Epigenetic reprogramming of the zygote in mice and men: on your marks, get set, go!. Reproduction 152, R211–R222 (2016). es_ES
dc.description.references Adamek, A. & Kasprzak, A. Insulin-like growth factor (IGF) system in liver diseases. Int. J. Mol. Sci. 19, E1308 (2018). es_ES
dc.description.references Kineman, R. D., del Rio-Moreno, M. & Sarmento-Cabral, A. 40 years of IGF1: understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. J. Mol. Endocrinol. 61, T187–T198 (2018). es_ES
dc.description.references Davis, S. R. & Cousins, R. J. Metallothionein expression in animals: a physiological perspective on function. J. Nutr. 130, 1085–1088 (2000). es_ES
dc.description.references Günes, Ć et al. Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J. 17, 2846–2854 (1998). es_ES
dc.description.references Kambe, T., Tsuji, T., Hashimoto, A. & Itsumura, N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev. 95, 749–784 (2015). es_ES
dc.description.references Xia, X. et al. Serum levels of trace elements in children born after assisted reproductive technology. Clin. Chim. Acta 495, 664–669 (2019). es_ES
dc.description.references Bird, A. J. Cellular sensing and transport of metal ions: Implications in micronutrient homeostasis. J. Nutr. Biochem. 26, 1103–1115 (2015). es_ES
dc.description.references Meesapyodsuk, D. & Qiu, X. The front-end desaturase: Structure, function, evolution and biotechnological use. Lipids 47, 227–237 (2012). es_ES
dc.description.references Chimhashu, T. et al. Sensitivity of fatty acid desaturation and elongation to plasma zinc concentration: a randomised controlled trial in Beninese children. Br. J. Nutr. https://doi.org/10.1017/S000711451700366X (2018). es_ES
dc.description.references Wang, L. Y. et al. Alteration of fatty acid metabolism in the liver, adipose tissue, and testis of male mice conceived through assisted reproductive technologies: fatty acid metabolism in ART mice. Lipids Health Dis. 12, 5 (2013). es_ES
dc.description.references Li, J., Yin, H., Bibus, D. M. & Byelashov, O. A. The role of Omega-3 docosapentaenoic acid in pregnancy and early development. Eur. J. Lipid Sci. Technol. 118, 1692–1701 (2016). es_ES
dc.description.references Hadley, K. B., Ryan, A. S., Forsyth, S., Gautier, S. & Salem, N. The essentiality of arachidonic acid in infant development. Nutrients 8, 216 (2016). es_ES
dc.description.references Makowski, L. & Hotamisligil, G. S. The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr. Opin. Lipidol. 16, 543–548 (2005). es_ES
dc.description.references Waynforth, D. Effects of conception using assisted reproductive technologies on infant health and development: An evolutionary perspective and analysis using UK millennium cohort data. Yale J. Biol. Med. 91, 225–235 (2018). es_ES
dc.description.references Sullivan, E. M. et al. Mechanisms bywhich dietary fatty acids regulate mitochondrial structure-function in health and disease. Adv. Nutr. 9, 247–262 (2018). es_ES
dc.description.references Richardson, U. I. & Wurtman, R. J. Polyunsaturated fatty acids stimulate phosphatidylcholine synthesis in PC12 cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1771, 558–563 (2007). es_ES
dc.description.references Singh, A. et al. Human glutathione S-transferase enzyme gene polymorphisms and their association with neurocysticercosis. Mol. Neurobiol. 54, 2843–2851 (2017). es_ES
dc.description.references Yu, H. F. et al. Malic enzyme 1 is important for uterine decidualization in response to progesterone/cAMP/PKA/HB-EGF pathway. FASEB J. 34, 3820–3837 (2020). es_ES
dc.description.references Chen, M. et al. Altered glucose metabolism in mouse and humans conceived by IVF. Diabetes 63, 3189–3198 (2014). es_ES
dc.description.references Auroux, M. Long-term effects in progeny of paternal environment and of gamete/embryo cryopreservation. Hum. Reprod. Update 6, 550–563 (2000). es_ES
dc.description.references Belva, F. et al. Semen quality of young adult ICSI offspring: The first results. Hum. Reprod. 31, 2811–2820 (2016). es_ES
dc.description.references Marco-Jiménez, F. & Vicente, J. S. Overweight in young males reduce fertility in rabbit model. PLoS ONE 12, e0180679 (2017). es_ES
dc.description.references Laubach, Z. M. et al. Epigenetics and the maintenance of developmental plasticity: extending the signalling theory framework. Biol. Rev. 93, 1323–1338 (2018). es_ES
dc.description.references Estany, J., Camacho, J., Baselga, M. & Blasco, A. Selection response of growth rate in rabbits for meat production. Genet. Sel. Evol. 24, 527–537 (1992). es_ES
dc.description.references Vicente, J. S., Viudes-de-Castro, M. P., de la García, M. L. & Baselga, M. Effect of rabbit line on a program of cryopreserved embryos by vitrification. Reprod. Nutr. Dev. 43, 137–143 (2003). es_ES
dc.description.references Zucker, I. & Beery, A. K. Males still dominate animal studies. Nature 465, 690 (2010). es_ES
dc.description.references Vicente, J. S., Viudes-De-Castro, M. P. & García, M. L. In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reprod. Nutr. Dev. 39, 657–662 (1999). es_ES
dc.description.references Besenfelder, U. & Brem, G. Laparoscopic embryo transfer in rabbits. J. Reprod. Fertil. 99, 53–56 (1993). es_ES
dc.description.references Blasco, A. The use of Bayesian statistics in meat quality analyses: a review. Meat Sci. 69, 115–122 (2005). es_ES
dc.description.references Andrews, S. FASTQC a quality control tool for high throughput sequence data. Babraham Institute (2015). Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc. es_ES
dc.description.references Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015). es_ES
dc.description.references Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015). es_ES
dc.description.references Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009). es_ES
dc.description.references Wang, Y. E., Kutnetsov, L., Partensky, A., Farid, J. & Quackenbush, J. WebMeV: a cloud platform for analyzing and visualizing cancer genomic data. Cancer Res. 77, e11–e14 (2017). es_ES
dc.description.references Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 44, 566–570 (2015). es_ES
dc.description.references Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16, 169 (2015). es_ES
dc.description.references Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009). es_ES
dc.description.references Diretto, G. et al. Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules 22, E1359 (2017). es_ES
dc.description.references Cappelli, G. et al. A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. J. Funct. Foods 45, 499–511 (2018). es_ES
dc.description.references Di Meo, F. et al. Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. J. Funct. Foods 61, 103515 (2019). es_ES
dc.description.references Fiore, A. et al. A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio. BMC Plant Biol. 12, 50 (2012). es_ES
dc.description.references Rambla, J. L. et al. Gene-metabolite networks of volatile metabolism in Airen and Tempranillo grape cultivars revealed a distinct mechanism of aroma bouquet production. Front. Plant Sci. 7, 1619 (2016). es_ES
dc.description.references Sulli, M. et al. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS ONE 12, e0184143 (2017). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem