- -

Multipurpose self-configuration of programmable photonic circuits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multipurpose self-configuration of programmable photonic circuits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-López, Daniel es_ES
dc.contributor.author López-Hernández, Aitor es_ES
dc.contributor.author Dasmahapatra, Prometheus es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.date.accessioned 2021-11-05T12:27:20Z
dc.date.available 2021-11-05T12:27:20Z
dc.date.issued 2020-12-11 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176086
dc.description.abstract [EN] Programmable integrated photonic circuits have been called upon to lead a new revolution in information systems by teaming up with high speed digital electronics and in this way, adding unique complementary features supported by their ability to provide bandwidthunconstrained analog signal processing. Relying on a common hardware implemented by two-dimensional integrated photonic waveguide meshes, they can provide multiple functionalities by suitable programming of their control signals. Scalability, which is essential for increasing functional complexity and integration density, is currently limited by the need to precisely control and configure several hundreds of variables and simultaneously manage multiple configuration actions. Here we propose and experimentally demonstrate two different approaches towards management automation in programmable integrated photonic circuits. These enable the simultaneous handling of circuit self-characterization, auto-routing, self-configuration and optimization. By combining computational optimization and photonics, this work takes an important step towards the realization of high-density and complex integrated programmable photonics. es_ES
dc.description.sponsorship D.P.L. acknowledges funding through the Spanish MINECO Juan de la Cierva program. J.C. acknowledges funding from the ERC Advanced Grant ERC-ADG-2016-741415 UMWP-Chip and ERC-2019-POC-859927. Authors also acknowledge funding from Future MWP technologies and applications PROMETEO/2017/103, Advanced Instrumentation for World Class Microwave Photonics Research IDIFEDER/2018/031, EUIMWP CA16220, Infraestructura para caracterizacion de Chips Fotonicos EQC2018-004683-P. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Multipurpose self-configuration of programmable photonic circuits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41467-020-19608-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F031//ADVANCED INSTRUMENTATION FOR WORLD CLASS MICROWAVE PHOTONICS RESEARCH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/859927/EU/Field Programmable Photonic Arrays/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103//TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA16220//European Network for High Performance Integrated Microwave Photonics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//EQC2018-004683-P//INFRAESTRUCTURA PARA CARACTERIZACION DE CHIPS FOTONICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Pérez-López, D.; López-Hernández, A.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Multipurpose self-configuration of programmable photonic circuits. Nature Communications. 11(1):1-11. https://doi.org/10.1038/s41467-020-19608-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41467-020-19608-w es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33311499 es_ES
dc.identifier.pmcid PMC7733469 es_ES
dc.relation.pasarela S\434319 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Chrostowski, L. & Hochberg, M. Silicon Photonics Design (Cambridge University Press, 2015). es_ES
dc.description.references Lin, Y. et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si 3N4/SiO2) microring resonators for optical coherent system. IEEE Photonics J. 10, 1400108 (2018). es_ES
dc.description.references Bogaerts, W. et al. Proc. Integrated Design for Integrated Photonics: from the Physical to the Circuit Level and Back (SPIE Optics and Optoelectronics, Prague, Czech Republic, 2013). es_ES
dc.description.references Inniss, D. & Rubenstein, R. Silicon Photonics: Fueling the Next Information Revolution (Elsevier Science, 2016). es_ES
dc.description.references Streshinsky, M. et al. The road to affordable, large-scale silicon photonics. Opt. Photonics News 24, 32–39, (2013). es_ES
dc.description.references Carrol, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016). es_ES
dc.description.references Capmany, J. & Pérez, D. Programmable Integrated Photonics (Oxford University Press, 2019). es_ES
dc.description.references Lyke, J. et al. An introduction to reconfigurable systems. Proc. IEEE 103, 291–317 (2015). es_ES
dc.description.references Capmany, J., Gasulla, I. & Pérez, D. The programmable processor. Nat. Photonics 10, 6–8 (2015). es_ES
dc.description.references Carolan, J. et al. Universal linear optics. Science 349, 711 (2015). es_ES
dc.description.references Ribeiro, A. et al. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016). es_ES
dc.description.references Annoni, A. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017). es_ES
dc.description.references Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017). es_ES
dc.description.references Mennea, P. L. et al. Modular linear optical circuits. Optica 5, 1087–1090 (2018). es_ES
dc.description.references Zheng, D. et al. Low-loss broadband 5×5 non-blocking Si3N4 optical switch matrix. Opt. Lett. 44, 2629–2632 (2019). es_ES
dc.description.references Zhuang, L. et al. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015). es_ES
dc.description.references Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017). es_ES
dc.description.references Zhang, W. & Yao, J. Photonic integrated field-programmable disk array signal processor. Nat. Commun. 11, 406 (2020). es_ES
dc.description.references Eberhart, J. K. R. A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE, Nagoya, Japan, 1995). es_ES
dc.description.references Whitley, D. A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994). es_ES
dc.description.references Zibar, D., Wymeersch, H. & Lyubomirsky, I. Machine Learning under the spotlight. Nat. Photonics 11, 749–751 (2017). es_ES
dc.description.references Pérez, D. Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. In IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26 (IEEE, 2019). es_ES
dc.description.references Pérez, D., Gasulla, I. & Capmany, J. Field-programmable photonic arrays. Opt. Express 26, 27265–27278 (2018). es_ES
dc.description.references Pérez, D., Gasulla, I., Soref, R. & Capmany, J. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016). es_ES
dc.description.references Pérez-López, D., Sánchez, E. & Capmany, Y. J. Programmable true time delay lines using integrated waveguide meshes. J. Lightwave Technol. 36, 4591–4601 (2018). es_ES
dc.description.references López, A. et al. Auto-routing algorithm for field-programmable photonic gate arrays. Opt. Express 28, 737–752 (2020). es_ES
dc.description.references Chen, X. & Boggaerts, W. A graph-based design and programming strategy for reconfigurable photonic circuits. In IEEE Photonics Society Summer Topical Meeting Series (SUM) (IEEE, Fort Lauderdale, FL, USA, 2019). es_ES
dc.description.references Pérez, D., López, A., DasMahapatra, P. & Capmany, J. Field-Programmable Photonic Array for multipurpose microwave photonic applications. In IEEE International Topical Meeting on Microwave Photonics (MWP) (IEEE, Ottawa, Canada, 2019). es_ES
dc.description.references Pérez, D. & Capmany, J. Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica 6, 19–27 (2019). es_ES
dc.description.references Yegnanarayanan, S. et al. Automated initialization of reconfigurable silicon-nitride (SiNx) filters. In Conference on Lasers and Electro-Optics (IEEE, San José, CA, 2018). es_ES
dc.description.references Milanizadeh, M. et al. Cancelling thermal cross-talk effects in photonic integrated circuits. J. Light. Tech. 37, 1325–1332 (2019). es_ES
dc.description.references Xie, Y., Zhuang, L. & Lowery, A. J. Picosecond optical pulse processing using a terahertz-bandwidth reconfigurable photonic integrated circuit. Nanophotonics 7, 837–852 (2018). es_ES
dc.description.references Guan, B. et al. CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014). es_ES
dc.description.references Doylend, J. K. et al. Hybrid III/V silicon photonic source with integrated 1D free-space beam steering. Opt. Lett. 37, 4257–4259 (2012). es_ES
dc.description.references Burla, M. Advanced integrated optical beam forming networks for broadband phased array antenna systems, Telecommunication Engineering Faculty of Electrical Engineering, Mathematics and Computer Science. PhD. Thesis, University of Twente (2013). es_ES
dc.description.references Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip, Nat. Commun. 6, 5957 (2015). es_ES
dc.description.references Dumais, P. et al. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Lightwave Technol. 36, 233–238 (2018). es_ES
dc.description.references Tanizawa, K. et al. 32×32 strictly non-blocking Si-wire optical switch on ultra-small die of 11×25 mm2. In Optical Fiber Communications Conference (IEEE, Los Angeles, CA, USA, 2015). es_ES
dc.description.references Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015). es_ES
dc.description.references Gazman, A. et al. Tapless and topology agnostic calibration solution for silicon photonic switches. Opt. Express 26, 347241 (2018). es_ES
dc.description.references Cheng, Q. et al. First demonstration of automated control and assessment of a dynamically reconfigured monolithic 8 × 8 wavelength-and-space switch. IEEE J. Opt. Commun. Netw. 7, 388–395 (2015). es_ES
dc.description.references Tait, A. N. et al. Continuous calibration of microring weights for analog optical networks. IEEE Photonics Technol. Lett. 28, 887–890 (2016). es_ES
dc.description.references Carolan, J. et al. Scalable feedback control of single photon sources for photonic quantum technologies. Optica 6, 335–341 (2019). es_ES
dc.description.references Tait, A. N. et al. Multi-channel control for microring weightbanks. Opt. Express 24, 8895 (2016). es_ES
dc.description.references Jiang, H. et al. Chip-based arbitrary radio-frequency photonic filter with algorithm-driven reconfigurable resolution. Opt. Lett. 43, 415–418 (2018). es_ES
dc.description.references Jayatilleka, H. Automatic configuration and wavelength locking of coupled silicon ring resonators. J. Lightwave Technol. 36, 210–218 (2018). es_ES
dc.description.references Choo, G. Automatic monitor-based tuning of reconfigurable silicon photonic APF-based pole/zero filters. J. Lightwave Technol. 36, 1899–1911 (2018). es_ES
dc.description.references Choo, G. Automatic monitor-based tuning of an RF silicon photonic 1X4 asymmetric binary tree true-time-delay beamforming network. J. Lightwave Technol. 36, 5263–5275 (2018). es_ES
dc.description.references Bin Mohd Zain, M. Z. et al. A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization. Appl. Soft Comput. 70, 680–700 (2018). es_ES
dc.description.references Pérez, D. et al. Thermal tuners on a silicon nitride platform. Preprint at https://arxiv.org/abs/1604.02958 (2016). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem