- -

Computational optical imaging with a photonic lantern

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational optical imaging with a photonic lantern

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Choudhury, Debaditya es_ES
dc.contributor.author McNicholl, Duncan K. es_ES
dc.contributor.author Repetti, Audrey es_ES
dc.contributor.author Gris-Sánchez, Itandehui es_ES
dc.contributor.author Li, Shuhui es_ES
dc.contributor.author Phillips, David B. es_ES
dc.contributor.author Whyte, Graeme es_ES
dc.contributor.author Birks, Tim A. es_ES
dc.contributor.author Wiaux, Yves es_ES
dc.contributor.author Thomson, Robert R. es_ES
dc.date.accessioned 2021-11-05T12:27:48Z
dc.date.available 2021-11-05T12:27:48Z
dc.date.issued 2020-10-15 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176106
dc.description.abstract [EN] The thin and flexible nature of optical fibres often makes them the ideal technology to view biological processes in-vivo, but current microendoscopic approaches are limited in spatial resolution. Here, we demonstrate a route to high resolution microendoscopy using a multicore fibre (MCF) with an adiabatic multimode-to-single-mode "photonic lantern" transition formed at the distal end by tapering. We show that distinct multimode patterns of light can be projected from the output of the lantern by individually exciting the single-mode MCF cores, and that these patterns are highly stable to fibre movement. This capability is then exploited to demonstrate a form of single-pixel imaging, where a single pixel detector is used to detect the fraction of light transmitted through the object for each multimode pattern. A custom computational imaging algorithm we call SARA-COIL is used to reconstruct the object using only the pre-measured multimode patterns themselves and the detector signals. es_ES
dc.description.sponsorship This work was funded through the "Proteus" Engineering and Physical Sciences Research Council (EPSRC) Interdisciplinary Research Collaboration (IRC) (EP/K03197X/1), by the Science and Technology Facilities Council (STFC) through STFC-CLASP grants ST/K006509/1 and ST/K006460/1, STFC Consortium grants ST/N000625/1 and ST/N000544/1. S.L. acknowledges support from the National Natural Science Foundation of China under Grant no. 61705073. DBP acknowledges support from the Royal Academy of Engineering, and the European Research Council (PhotUntangle, 804626). The authors thank Philip Emanuel for the use of his confocal image of A549 cells and Eckhardt Optics for their image of the USAF 1951 target. The authors sincerely thank the anonymous reviewers of this paper for their detailed and considered feedback which helped us to improve the quality of this paper significantly. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Computational optical imaging with a photonic lantern es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41467-020-18818-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/804626/EU/Rendering the opaque transparent: Untangling light with bespoke optical transforms to see through scattering environments/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/STFC//ST%2FN000625%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPSRC//EP%2FK03197X%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/STFC//ST%2FK006509%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/STFC//ST%2FK006460%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/STFC//ST%2FN000544%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61705073/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Choudhury, D.; Mcnicholl, DK.; Repetti, A.; Gris-Sánchez, I.; Li, S.; Phillips, DB.; Whyte, G.... (2020). Computational optical imaging with a photonic lantern. Nature Communications. 11(1):1-9. https://doi.org/10.1038/s41467-020-18818-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41467-020-18818-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33060608 es_ES
dc.identifier.pmcid PMC7562926 es_ES
dc.relation.pasarela S\433562 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Royal Academy of Engineering, Reino Unido es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Science and Technology Facilities Council, Reino Unido es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Wood, H. A. C., Harrington, K., Birks, T. A., Knight, J. C. & Stone, J. M. High-resolution air-clad imaging fibers. Opt. Lett. 43, 5311–5314 (2018). es_ES
dc.description.references Akram, A. R. et al. In situ identification of Gram-negative bacteria in human lungs using a topical fluorescent peptide targeting lipid A. Sci. Transl. Med. 10, eaal0033 (2018). es_ES
dc.description.references Shin, J., Bosworth, B. T. & Foster, M. A. Compressive fluorescence imaging using a multi-core fiber and spatially dependent scattering. Opt. Lett. 42, 109–112 (2017). es_ES
dc.description.references Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012). es_ES
dc.description.references Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012). es_ES
dc.description.references Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photon. 9, 529–535 (2015). es_ES
dc.description.references Birks, T. A., Gris-Sánchez, I., Yerolatsitis, S., Leon-Saval, S. G. & Thomson, R. R. The photonic lantern. Adv. Opt. Photon. 7, 107–167 (2015). es_ES
dc.description.references Birks, T. A., Mangan, B. J., Díez, A., Cruz, J. L. & Murphy, D. F. Photonic lantern’ spectral filters in multi-core fiber. Opt. Express 20, 13996–14008 (2012). es_ES
dc.description.references Edgar, M. P., Gibson, G. M. & Padgett, M. J. Principles and prospects for single-pixel imaging. Nat. Photon. 13, 13–20 (2019). es_ES
dc.description.references Mahalati, R. N., Yu, Gu. R. & Kahn, J. M. Resolution limits for imaging through multi-mode fiber. Opt. Express 21, 1656–1668 (2013). es_ES
dc.description.references Amitonova, L. V. & de Boer, J. F. Compressive imaging through a multimode fiber. Opt. Lett. 43, 5427–5430 (2018). es_ES
dc.description.references Mallat, S. A Wavelet Tour of Signal Processing 2nd edn (Academic Press, Burlington, MA, 2009). es_ES
dc.description.references Lustig, M., Donoho, D. & Pauly, J. M. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007). es_ES
dc.description.references Davies, M., Puy, G., Vandergheynst, P. & Wiaux, Y. A compressed sensing framework for magnetic resonance fingerprinting. SIAM J. Imaging Sci. 7, 2623–2656 (2014). es_ES
dc.description.references Wiaux, Y., Puy, G., Scaife, A. M. M. & Vandergheynst, P. Compressed sensing imaging techniques in radio interferometry. Mon. Not. R. Astron. Soc. 395, 1733–1742 (2009). es_ES
dc.description.references Carrillo, R. E., McEwen, J. D. & Wiaux, Y. Sparsity averaging reweighted analysis (SARA): a novel algorithm for radio-interferometric imaging. Mon. Not. R. Astron. Soc. 426, 1223–1234 (2012). es_ES
dc.description.references Katz, O., Bromberg, Y. & Silberberg, Y. Compressive ghost imaging. Appl. Phys. Lett. 95, 131110 (2009). es_ES
dc.description.references Sun, B., Welsh, S. S., Edgar, M. P., Shapiro, J. H. & Padgett, M. J. Normalized ghost imaging. Opt. Express 20, 16892–16901 (2012). es_ES
dc.description.references Kim, M., Park, C., Rodriguez, C., Park, Y. & Cho, Y.-H. Superresolution imaging with optical fluctuation using speckle patterns illumination. Sci. Rep. 5, 16525 (2015). es_ES
dc.description.references Combettes, P. L. & Pesquet, J. -C. in Fixed-Point Algorithms for Inverse Problems in Science and Engineering (Springer, New York, 2011). es_ES
dc.description.references Komodakis, N. & Pesquet, J.-C. Playing with duality: an overview of recent primal dual approaches for solving large-scale optimization problems. IEEE Signal Proc. Mag. 32, 31–54 (2015). es_ES
dc.description.references Chandrasekharan, H. K. et al. Multiplexed single-mode wavelength-to-time mapping of multimode light. Nat. Commun. 8, 14080 (2017). es_ES
dc.description.references Wadsworth, W. J. et al. Very high numerical aperture fibers. Photon. Technol. Lett. 16, 843–845 (2004). es_ES
dc.description.references Pesquet, J.-C. & Repetti, A. A class of randomized primal-dual algorithms for distributed optimization. J. Nonlinear Convex Anal. 16, 2353–2490 (2015). es_ES
dc.description.references Chambolle, A., Ehrhardt, M. J., Richtárik, P. & Schönlieb, C.-B. Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM J. Optim. 28, 2783–2808 (2018). es_ES
dc.description.references Bolte, J., Sabach, S. & Teboulle, M. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2014). es_ES
dc.description.references Chouzenoux, E., Pesquet, J.-C. & Repetti, A. A block coordinate variable metric forward-backward algorithm. J. Glob. Optim. 66, 457–485 (2016). es_ES
dc.description.references Flusberg, B. A. et al. Fiber-optic fluorescence imaging. Nat. Methods 2, 941–950 (2005). es_ES
dc.description.references Tsvirkun, V. et al. Bending-induced inter-core group delays in multicore fibers. Opt. Express 25, 31863–31875 (2017). es_ES
dc.description.references Candès, E. J., Wakin, M. B. & Boyd, S. Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14, 877–905 (2008). es_ES
dc.description.references Condat, L. A primal–dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158, 460–479 (2013). es_ES
dc.description.references Vu, B. C. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comp. Math. 38, 667–681 (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem