- -

The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling

Mostrar el registro completo del ítem

Renau-Morata, B.; Carrillo, L.; Cebolla Cornejo, J.; Molina Romero, RV.; Martí-Renau, R.; Domínguez-Figueroa, J.; Vicente-Carbajosa, J.... (2020). The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling. Scientific Reports. 10(1):1-14. https://doi.org/10.1038/s41598-020-67537-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176117

Ficheros en el ítem

Metadatos del ítem

Título: The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling
Autor: Renau-Morata, Begoña Carrillo, Laura Cebolla Cornejo, Jaime Molina Romero, Rosa Victoria Martí-Renau, Raul Domínguez-Figueroa, José Vicente-Carbajosa, Jesús Medina, Joaquín Nebauer, Sergio G.
Entidad UPV: Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Tomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-020-67537-x
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-020-67537-x
Código del Proyecto:
info:eu-repo/grantAgreement/MCIU//SEV-2016-0672/
info:eu-repo/grantAgreement/AEI//PCI2019-103610/
info:eu-repo/grantAgreement/MINECO//RTA2012-00008-C02-02//Estudio del efecto de factores de transcripción tipo DOF (CDFS) sobre el crecimiento y la producción de solanáceas. Caracterización fisiológica y metabolómica/
info:eu-repo/grantAgreement/AEI//RTA2015-00014-C02-02//CARACTERIZACION AGRONOMICA, FISIOLOGICA Y MOLECULAR DE GENOTIPOS DE TOMATE CON MAYOR EFICIENCIA EN LA SINTESIS DE ASIMILADOS Y EN EL USO DE NITROGENO/
Tipo: Artículo

References

1FAO. Crops production database. FAOSTAT. Latest update: 04/03/2020. Food and Agriculture Organization of the United Nations. Rome https://www.fao.org/faostat (2018).

Willcox, J. K., Catignani, G. L. & Lazarus, S. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43, 1–18. https://doi.org/10.1080/10408690390826437 (2003).

Bai, Y. L. & Lindhout, P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?. Ann. Bot. 100, 1085–1094. https://doi.org/10.1093/aob/mcm150 (2007). [+]
1FAO. Crops production database. FAOSTAT. Latest update: 04/03/2020. Food and Agriculture Organization of the United Nations. Rome https://www.fao.org/faostat (2018).

Willcox, J. K., Catignani, G. L. & Lazarus, S. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43, 1–18. https://doi.org/10.1080/10408690390826437 (2003).

Bai, Y. L. & Lindhout, P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?. Ann. Bot. 100, 1085–1094. https://doi.org/10.1093/aob/mcm150 (2007).

Gascuel, Q., Diretto, G., Monforte, A. J., Fortes, A. M. & Granell, A. Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00652 (2017).

Handa, A. K., Anwar, R. & Mattoo, A. K. in Fruit Ripening Physiology, Signaling and Genomics (eds Nath, P. et al.) 259–290 (CABI, 2014).

van der Knaap, E. et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00227 (2014).

Okello, R. C. O., Heuvelink, E., de Visser, P. H. B., Struik, P. C. & Marcelis, L. F. M. What drives fruit growth?. Funct. Plant Biol. 42(9), 817–827. https://doi.org/10.1071/fp15060 (2015).

Bertin, N. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 95, 439–447. https://doi.org/10.1093/aob/mci042 (2005).

Smith, M. R., Rao, I. M. & Merchant, A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01889 (2018).

Osorio, S., Ruan, Y. L. & Fernie, A. R. An update on source-to-sink carbon partitioning in tomato. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00516 (2014).

Ho, L. C. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation Ito the quality and yield of tomato. J. Exp. Bot. 47, 1239–1243. https://doi.org/10.1093/jxb/47.Special_Issue.1239 (1996).

Koch, K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7, 235–246. https://doi.org/10.1016/j.pbi.2004.03.014 (2004).

Carrari, F. et al. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol. 142, 1380–1396. https://doi.org/10.1104/pp.106.088534 (2006).

Mounet, F. et al. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 1505–1528. https://doi.org/10.1104/pp.108.133967 (2009).

Ozga, J. A. & Reinecke, D. M. Hormonal interactions in fruit development. J. Plant Growth Regul. 22, 73–81. https://doi.org/10.1007/s00344-003-0024-9 (2003).

Liu, S. Y. et al. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci. Rep. https://doi.org/10.1038/s41598-018-21315-y (2018).

Serrani, J. C., Sanjuan, R., Ruiz-Rivero, O., Fos, M. & Garcia-Martinez, J. L. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 145, 246–257. https://doi.org/10.1104/pp.107.098335 (2007).

McAtee, P., Karim, S., Schaffer, R. & David, K. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00079 (2013).

Kataoka, K., Yashiro, Y., Habu, T., Sunamoto, K. & Kitajima, A. The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits. Sci. Hortic. 123, 228–233. https://doi.org/10.1016/j.scienta.2009.09.001 (2009).

Zhang, C. X., Tanabe, K., Tamura, F., Itai, A. & Yoshida, M. Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regul. 52, 161–172. https://doi.org/10.1007/s10725-007-9187-x (2007).

Shinozaki, Y. et al. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat. Commun. https://doi.org/10.1038/s41467-017-02782-9 (2018).

Ariizumi, T., Shinozaki, Y. & Ezura, H. Genes that influence yield in tomato. Breed. Sci. 63, 3–13. https://doi.org/10.1270/jsbbs.63.3 (2013).

Azzi, L. et al. Fruit growth-related genes in tomato. J. Exp. Bot. 66, 1075–1086. https://doi.org/10.1093/jxb/eru527 (2015).

Lemaire-Chamley, M. et al. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 139, 750–769. https://doi.org/10.1104/pp.105.063719 (2005).

Tanksley, S. D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16, S181–S189. https://doi.org/10.1105/tpc.018119 (2004).

Allan, A. C. & Espley, R. V. MYBs drive novel consumer traits in fruits and vegetables. Trends Plant Sci. 23, 693–705. https://doi.org/10.1016/j.tplants.2018.06.001 (2018).

Karlova, R. et al. Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot. 65, 4527–4541. https://doi.org/10.1093/jxb/eru316 (2014).

Rohrmann, J. et al. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant J. 68, 999–1013. https://doi.org/10.1111/j.1365-313X.2011.04750.x (2011).

Zhang, S. B. et al. Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum). Sci. Rep. https://doi.org/10.1038/srep23173 (2016).

Corrales, A. R. et al. Characterization of tomato Cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J. Exp. Bot. 65, 995–1012. https://doi.org/10.1093/jxb/ert451 (2014).

Renau-Morata, B. et al. Ectopic Expression of CDF3 genes in tomato enhances biomass production and yield under salinity stress conditions. Front. Plant Sci. 8, 18. https://doi.org/10.3389/fpls.2017.00660 (2017).

Guillet, C. et al. Regulation of the fruit-specific PEP carboxylase SlPPC2 promoter at early stages of tomato fruit development. PLoS ONE https://doi.org/10.1371/journal.pone.0036795 (2012).

Bourdon, M. et al. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 139, 3817–3826. https://doi.org/10.1242/dev.084053 (2012).

de Jong, M. et al. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. J Exp. Bot. 66, 3405–3416. https://doi.org/10.1093/jxb/erv152 (2015).

Serrani, J. C., Fos, M., Atares, A. & Garcia-Martinez, J. L. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-tom of tomato. J. Plant Growth Regul. 26, 211–221. https://doi.org/10.1007/s00344-007-9014-7 (2007).

Srivastava, A. & Handa, A. K. Hormonal regulation of tomato fruit development: a molecular perspective. J. Plant Growth Regul. 24, 67–82. https://doi.org/10.1007/s00344-005-0015-0 (2005).

Exposito-Rodriguez, M., Borges, A. A., Borges-Perez, A., Hernandez, M. & Perez, J. A. Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J. Plant Growth Regul. 26, 329–340. https://doi.org/10.1007/s00344-007-9019-2 (2007).

Li, Z. M. et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J. Exp. Bot. 63, 1155–1166. https://doi.org/10.1093/jxb/err329 (2012).

Wang, F., Sanz, A., Brenner, M. L. & Smith, A. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol. 101, 321–327. https://doi.org/10.1104/pp.101.1.321 (1993).

Pattison, R. J. et al. Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol. 168, 1684-U1002. https://doi.org/10.1104/pp.15.00287 (2015).

Musseau, C. et al. Identification of two new mechanisms that regulate fruit growth by cell expansion in tomato. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00988 (2017).

Shiota, H., Sudoh, T. & Tanaka, I. Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato. Plant Sci. 171, 277–285. https://doi.org/10.1016/j.plantsci.2006.03.021 (2006).

Wang, L. et al. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC Plant Biol. https://doi.org/10.1186/s12870-017-1212-2 (2017).

Long, S. P., Zhu, X. G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis increase crop yields?. Plant Cell Environ. 29, 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x (2006).

D’Aoust, M. A., Yelle, S. & Nguyen-Quoc, B. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11, 2407–2418. https://doi.org/10.1105/tpc.11.12.2407 (1999).

Liu, T., Hu, Y. Q. & Li, X. X. Characterization of a chestnut FLORICAULA/LEAFY homologous gene. Afr. J. Biotechnol. 10, 3978–3985 (2011).

Fridman, E., Carrari, F., Liu, Y. S., Fernie, A. R. & Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305, 1786–1789. https://doi.org/10.1126/science.1101666 (2004).

Ikeda, H. et al. Dynamic metabolic regulation by a chromosome segment from a wild relative during fruit development in a tomato introgression line, IL8-3. Plant Cell Physiol. 57, 1257–1270. https://doi.org/10.1093/pcp/pcw075 (2016).

Ho, L. C. Partitioning of assimilates in fruiting tomato plants. Plant Growth Regul. 2, 277–285. https://doi.org/10.1007/bf00027287 (1984).

Beauvoit, B. et al. Putting primary metabolism into perspective to obtain better fruits. Ann. Bot. 122, 1–21. https://doi.org/10.1093/aob/mcy057 (2018).

Corrales, A. R. et al. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell Environ. 40, 748–764. https://doi.org/10.1111/pce.12894 (2017).

Carrari, F. & Fernie, A. R. Metabolic regulation underlying tomato fruit development. J. Exp. Bot. 57, 1883–1897. https://doi.org/10.1093/jxb/erj020 (2006).

Osorio, S. et al. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation. Plant Physiol. 161, 628–643. https://doi.org/10.1104/pp.112.211094 (2013).

Gillaspy, G., Bendavid, H. & Gruissem, W. Fruits—a developmental perspective. Plant Cell 5, 1439–1451. https://doi.org/10.1105/tpc.5.10.1439 (1993).

Carrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A. & Garcia-Martinez, J. L. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol. 160, 1581–1596. https://doi.org/10.1104/pp.112.204552 (2012).

Chen, S. et al. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Hortic. Res. https://doi.org/10.1038/hortres.2016.59 (2016).

Mignolli, F., Vidoz, M. L., Picciarelli, P. & Mariotti, L. Gibberellins modulate auxin responses during tomato (Solanum lycopersicum L.) fruit development. Physiol. Plant. 165, 768–779. https://doi.org/10.1111/ppl.12770 (2019).

De Jong, M., Wolters-Arts, M., Feron, R., Mariani, C. & Vriezen, W. H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J. 57, 160–170. https://doi.org/10.1111/j.1365-313X.2008.03671.x (2009).

Ellul, P. et al. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. Mill.) is genotype and procedure dependent. Theor. Appl. Genet. 106, 231–238. https://doi.org/10.1007/s00122-002-0928-y (2003).

Renau-Morata, R. et al. The use of corms produced under storage at low temperatures as a source of explants for the in vitro propagation of saffron reduces contamination levels and increases multiplication rates. Ind. Crops Prod. 46, 97–104. https://doi.org/10.1016/j.indcrop.2013.01.013 (2013).

Cebolla-Cornejo, J., Valcarcel, M., Herrero-Martinez, J. M., Rosello, S. & Nuez, F. High efficiency joint CZE determination of sugars and acids in vegetables and fruits. Electrophoresis 33, 2416–2423. https://doi.org/10.1002/elps.201100640 (2012).

Nebauer, S. G. et al. Influence of crop load on the expression patterns of starch metabolism genes in alternate-bearing citrus trees. Plant Physiol. Biochem. 80, 105–113. https://doi.org/10.1016/j.plaphy.2014.03.032 (2014).

Hoffman, N. E., Ko, K., Milkowski, D. & Pichersky, E. Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene UBI3. Plant Mol. Biol. 17, 1189–1201. https://doi.org/10.1007/bf00028735 (1991).

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).

Miedes, E. & Lorences, E. P. Changes in cell wall pectin and pectinase activity in apple and tomato fruits during Penicillium expansum infection. J. Sci. Food Agric. 86, 1359–1364 (2006).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem