- -

A conserved motif in three viral movement proteins from different genera is required for host factor recruitment and cell-to-cell movement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A conserved motif in three viral movement proteins from different genera is required for host factor recruitment and cell-to-cell movement

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author NAVARRO BOHIGUES, JOSE ANTONIO es_ES
dc.contributor.author Serra-Soriano, Marta es_ES
dc.contributor.author Corachán Valencia, Lorena es_ES
dc.contributor.author Pallás Benet, Vicente es_ES
dc.date.accessioned 2021-11-05T12:37:03Z
dc.date.available 2021-11-05T12:37:03Z
dc.date.issued 2020-03-16 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176118
dc.description.abstract [EN] Due to their minimal genomes, plant viruses are forced to hijack specific cellular pathways to ensure host colonization, a condition that most frequently involves physical interaction between viral and host proteins. Among putative viral interactors are the movement proteins, responsible for plasmodesma gating and genome binding during viral transport. Two of them, DGBp1 and DGBp2, are required for alpha-, beta- and gammacarmovirus cell-to-cell movement, but the number of DGBp-host interactors identified at present is limited. By using two different approaches, yeast two-hybrid and bimolecular fluorescence complementation assays, we found three Arabidopsis factors, eIF3g1, RPP3A and WRKY36, interacting with DGBp1s from each genus mentioned above. eIF3g1 and RPP3A are mainly involved in protein translation initiation and elongation phases, respectively, while WRKY36 belongs to WRKY transcription factor family, important regulators of many defence responses. These host proteins are not expected to be associated with viral movement, but knocking out WRKY36 or silencing either RPP3A or eIF3g1 negatively affected Arabidopsis infection by Turnip crinkle virus. A highly conserved FNF motif at DGBp1 C-terminus was required for protein-protein interaction and cell-to-cell movement, suggesting an important biological role. es_ES
dc.description.sponsorship We thank Dr. Anne Simon and Dr. Steve A. Lommel for providing an infectious cDNA clone of the Turnip crinkle virus strain M (TCV-M) and PZP-TCV-sGFP plasmid, respectively. This work was funded by grant BIO2017-88321-R from the Spanish Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). J.A.N. and M.S.-S. are the recipients of a postdoctoral contract and a PhD fellowship from the Ministerio de Ciencia, Innovacion y Universidades of Spain. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.title A conserved motif in three viral movement proteins from different genera is required for host factor recruitment and cell-to-cell movement es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-020-61741-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BIO2017-88321-R//DESCRIFRANDO INTERACCIONES VIRUS-PLANTA ESENCIALES PARA LA SUSCEPTIBILIDAD Y/O RESISTENCIA EN DOS PATOSISTEMAS AGRONOMICAMENTE RELEVANTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Navarro Bohigues, JA.; Serra-Soriano, M.; Corachán Valencia, L.; Pallás Benet, V. (2020). A conserved motif in three viral movement proteins from different genera is required for host factor recruitment and cell-to-cell movement. Scientific Reports. 10(1):1-15. https://doi.org/10.1038/s41598-020-61741-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-020-61741-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32179855 es_ES
dc.identifier.pmcid PMC7075923 es_ES
dc.relation.pasarela S\433586 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Sicard, A., Michalakis, Y., Gutiérrez, S. & Blanc, S. The strange lifestyle of multipartite viruses. PLoS Pathog. 12, e1005819–e1005819 (2016). es_ES
dc.description.references Pita, J. S. & Roossinck, M. J. Virus populations, mutation rates and frequencies. In Plant Virus Evol. (ed. Roossinck, M. J.) 109–121 https://doi.org/10.1007/978-3-540-75763-4_6 (Springer Berlin Heidelberg, 2008). es_ES
dc.description.references Ivanov, K. I. & Makinen, K. Coat proteins, host factors and plant viral replication. Curr. Opin. Virol. 2, 712–718 (2012). es_ES
dc.description.references Wang, A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53, 45–66 (2015). es_ES
dc.description.references García, J. A. & Pallás, V. Viral factors involved in plant pathogenesis. Curr. Opin. Virol. 10, 21–30 (2015). es_ES
dc.description.references Garcia-Ruiz, H. Host factors against plant viruses. Mol. Plant Pathol. 20, 1588–1601 (2019). es_ES
dc.description.references Hull, R. Induction of disease 1: virus movement through the plant and effects on plant metabolism. In Matthews’ Plant Virology (ed. Hull, R.) 373–436 (Academic Press, 2002). es_ES
dc.description.references Navarro, J. A. & Pallas, V. An update on the intracellular and intercellular trafficking of carmoviruses. Front. Plant. Sci. 8, 1801 (2017). es_ES
dc.description.references Azevedo, J. et al. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev. 24, 904–915 (2010). es_ES
dc.description.references Zhang, X., Zhang, X., Singh, J., Li, D. & Qu, F. Temperature-dependent survival of Turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires dcl2, AGO2, and HEN1. J. Virol. 86, 6847–6854 (2012). es_ES
dc.description.references Donze, T., Qu, F., Twigg, P. & Morris, T. J. Turnip crinkle virus coat protein inhibits the basal immune response to virus invasion in Arabidopsis by binding to the NAC transcription factor TIP. Virology 449, 207–214 (2014). es_ES
dc.description.references Lin, B. & Heaton, L. A. An Arabidopsis thaliana protein interacts with a movement protein of Turnip crinkle virus in yeast cells and in vitro. J. Gen. Virol. 82, 1245–1251 (2001). es_ES
dc.description.references Navarro, J. A., Sanchez-Navarro, J. A. & Pallas, V. Key checkpoints in the movement of plant viruses through the host. Adv. Virus Res. 104, 1–64 (2019). es_ES
dc.description.references Navarro, J. A. et al. RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology 356, 57–67 (2006). es_ES
dc.description.references Serra-Soriano, M., Pallás, V. & Navarro, J. A. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. Plant J. 77, 863–879 (2014). es_ES
dc.description.references Genoves, A., Navarro, J. A. & Pallas, V. Functional analysis of the five melon necrotic spot virus genome-encoded proteins. J. Gen. Virol. 87, 2371–2380 (2006). es_ES
dc.description.references Li, W. Z., Qu, F. & Morris, T. J. Cell-to-cell movement of turnip crinkle virus is controlled by two small open reading frames that function in trans. Virology 244, 405–416 (1998). es_ES
dc.description.references Martinez-Turino, S. & Hernandez, C. A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology 413, 310–319 (2011). es_ES
dc.description.references Molnár, A., Havelda, Z., Dalmay, T., Szutorisz, H. & Burgyán, J. Complete nucleotide sequence of tobacco necrosis virus strain D(H) and genes required for RNA replication and virus movement. J. Gen. Virol. 78(6), 1235–1239 (1997). es_ES
dc.description.references Marcos, J. F., Vilar, M., Pérez-Payá, E. & Pallás, V. In vivo detection, RNA-binding properties and characterization of the RNA-binding domain of the p7 putative movement protein from Carnation mottle carmovirus (CarMV). Virology 255, 354–365 (1999). es_ES
dc.description.references Vilar, M., Esteve, V., Pallás, V., Marcos, J. F. & Pérez-Payá, E. Structural properties of carnation mottle virus p7 movement protein and its RNA-binding domain. J. Biol. Chem. 276, 18122–18129 (2001). es_ES
dc.description.references Vilar, M., Saurí, A., Marcos, J. F., Mingarro, I. & Pérez‐Payá, E. Transient structural ordering of the RNA‐binding domain of carnation mottle virus p7 movement protein modulates nucleic acid binding. Chembiochem 6, 1391–1396 (2005). es_ES
dc.description.references Genoves, A., Navarro, J. A. & Pallas, V. A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology 395, 133–142 (2009). es_ES
dc.description.references Garcia-Castillo, S., Sanchez-Pina, M. A. & Pallas, V. Spatio-temporal analysis of the RNAs, coat and movement (p7) proteins of Carnation mottle virus in Chenopodium quinoa plants. J. Gen. Virol. 84, 745–749 (2003). es_ES
dc.description.references Cohen, Y., Qu, F., Gisel, A., Morris, T. J. & Zambryski, P. C. Nuclear localization of turnip crinkle virus movement protein p8. Virology 273, 276–285 (2000). es_ES
dc.description.references Martinez-Gil, L., Sauri, A., Vilar, M., Pallas, V. & Mingarro, I. Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV). Virology 367, 348–357 (2007). es_ES
dc.description.references Sauri, A., Saksena, S., Salgado, J., Johnson, A. E. & Mingarro, I. Double-spanning plant viral movement protein integration into the endoplasmic reticulum membrane is signal recognition particle-dependent, translocon-mediated, and concerted. J. Biol. Chem. 280, 25907–25912 (2005). es_ES
dc.description.references Genoves, A., Navarro, J. A. & Pallas, V. The intra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway. Mol. Plant-Microbe Interact. 23, 263–272 (2010). es_ES
dc.description.references Aparicio, F. & Pallás, V. The coat protein of Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic acid-dependent defence signalling response. Mol. Plant Pathol. 18(2), 173–186 (2017). es_ES
dc.description.references Yang, Y. et al. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat. Plants 4, 98–107 (2018). es_ES
dc.description.references Cutler, S. R., Ehrhardt, D. W., Griffitts, J. S. & Somerville, C. R. Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA 97, 3718–3723 (2000). es_ES
dc.description.references La Cour, T. et al. Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17, 527–536 (2004). es_ES
dc.description.references Prieto, G., Fullaondo, A. & Rodriguez, J. A. Prediction of nuclear export signals using weighted regular expressions (Wregex). Bioinformatics 30, 1220–1227 (2014). es_ES
dc.description.references Wobbe, K. K., Akgoz, M., Dempsey, D. A. & Klessig, D. F. A single amino acid change in turnip crinkle virus movement protein p8 affects RNA binding and virulence on Arabidopsis thaliana. J. Virol. 72, 6247–6250 (1998). es_ES
dc.description.references Akgoz, M., Nguyen, Q. N., Talmadge, A. E., Drainville, K. E. & Wobbe, K. K. Mutational analysis of Turnip crinkle virus movement protein p8. Mol. Plant Pathol. 2(1), 37–48, https://doi.org/10.1046/j.1364-3703.2001.00048.x (2001). es_ES
dc.description.references Ahlfors, R. et al. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16, 1925–1937 (2004). es_ES
dc.description.references Aravind, L. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26, 273–275 (2001). es_ES
dc.description.references Meyer, E. A., Castellano, R. K. & Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. Engl. 42, 1210–1250 (2003). es_ES
dc.description.references Profit, A. A., Felsen, V., Chinwong, J., Mojica, E. R. & Desamero, R. Z. Evidence of pi-stacking interactions in the self-assembly of hIAPP(22-29). Proteins 81, 690–703 (2013). es_ES
dc.description.references Amari, K., Vazquez, F. & Heinlein, M. Manipulation of plant host susceptibility: an emerging role for viral movement proteins? Front. Plant. Sci. 3, 10 (2012). es_ES
dc.description.references Morozov, S. Y. & Solovyev, A. G. Did silencing suppression counter-defensive strategy contribute to origin and evolution of the triple gene block coding for plant virus movement proteins? Front. Plant. Sci. 3, 136 (2012). es_ES
dc.description.references Levy, A., Zheng, J. Y. & Lazarowitz, S. G. The tobamovirus turnip vein clearing virus 30-kilodalton movement protein localizes to novel nuclear filaments to enhance virus infection. J. Virol. 87, 6428–6440 (2013). es_ES
dc.description.references Gonzalo, P. & Reboud, J. P. The puzzling lateral flexible stalk of the ribosome. Biol. Cell. 95, 179–193 (2003). es_ES
dc.description.references Szick, K., Springer, M. & Bailey-Serres, J. Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes. Proc. Natl. Acad. Sci. USA 95, 2378–2383 (1998). es_ES
dc.description.references Hafren, A., Eskelin, K. & Makinen, K. Ribosomal protein P0 promotes Potato virus A infection and functions in viral translation together with VPg and eIF(iso)4E. J. Virol. 87, 4302–4312 (2013). es_ES
dc.description.references Sato, H. et al. Measles virus N protein inhibits host translation by binding to eIF3-p40. J. Virol. 81, 11569–11576 (2007). es_ES
dc.description.references Bhardwaj, U., Powell, P. & Goss, D. J. Eukaryotic initiation factor (eIF) 3 mediates barley yellow dwarf viral mRNA 3′–5′ UTR interactions and 40S ribosomal subunit binding to facilitate cap-independent translation. Nucleic Acids Res. 47, 6225–6235 es_ES
dc.description.references Park, H. S., Himmelbach, A., Browning, K. S., Hohn, T. & Ryabova, L. A. A plant viral ‘reinitiation’ factor interacts with the host translational machinery. Cell 106, 723–733 (2001). es_ES
dc.description.references Thiébeauld, O., Pooggin, M. & Ryabova, L. Alternative translation strategies in plant viruses. Plant Viruses 1, 1–20 (2007). es_ES
dc.description.references Bureau, M. et al. P6 protein of Cauliflower mosaic virus, a translation reinitiator, interacts with ribosomal protein L13 from Arabidopsis thaliana. J. Gen. Virol. 85, 3765–3775 (2004). es_ES
dc.description.references Ryabova, L. A., Pooggin, M. M. & Hohn, T. Translation reinitiation and leaky scanning in plant viruses. Virus Res. 119, 52–62 (2006). es_ES
dc.description.references Chen, L., Zhang, L., Li, D., Wang, F. & Yu, D. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 110, E1963–E1971 (2013). es_ES
dc.description.references Huh, S. U., Choi, L. M., Lee, G. J., Kim, Y. J. & Paek, K. H. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Sci. 197, 50–58 (2012). es_ES
dc.description.references Menke, F. L. et al. Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol. Plant Microbe Interact. 18, 1027–1034 (2005). es_ES
dc.description.references Park, H. S. & Kim, K. H. Virus-induced silencing of the WRKY1 transcription factor that interacts with the SL1 structure of Potato virus X leads to higher viral RNA accumulation and severe necrotic symptoms. Plant Pathol. J. 28, 40–48 (2012). es_ES
dc.description.references Gao, R., Liu, P., Yong, Y. & Wong, S. M. Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana. Sci. Rep. 6, 24604 (2016). es_ES
dc.description.references Zou, L. et al. Transcription factor WRKY30 mediates resistance to Cucumber mosaic virus in Arabidopsis. Biochem. Biophys. Res. Commun. 517, 118–124 (2019). es_ES
dc.description.references Huang, Y. et al. Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum). BMC Genomics 17, 788 (2016). es_ES
dc.description.references Besseau, S., Li, J. & Palva, E. T. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J. Exp. Bot. 63, 2667–2679 (2012). es_ES
dc.description.references Yan, L. et al. Auto- and cross-repression of three arabidopsis WRKY transcription factors WRKY18, WRKY40, and WRKY60 negatively involved in ABA signaling. J. Plant Growth Regul. 32, 399–416 (2013). es_ES
dc.description.references Xu, E., Vaahtera, L. & Brosché, M. Roles of defense hormones in the regulation of ozone-induced changes in gene expression and cell death. Mol. Plant 8, 1776–1794 (2015). es_ES
dc.description.references Li, S.-W., Leng, Y. & Shi, R.-F. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings. BMC Genomics 18, 188 (2017). es_ES
dc.description.references Imran, Q. M. et al. Transcriptome wide identification and characterization of NO-responsive WRKY transcription factors in Arabidopsis thaliana L. Environ. Exp. Bot. 148, 128–143 (2018). es_ES
dc.description.references Hernandez, J. et al. Oxidative stress and antioxidative responses in plant–virus interactions. Physiol. Mol. Plant Pathol. 94, 134–148 (2015). es_ES
dc.description.references Ahlfors, R., Brosche, M., Kollist, H. & Kangasjarvi, J. Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J. 58, 1–12 (2009). es_ES
dc.description.references Oh, J. W., Kong, Q., Song, C., Carpenter, C. D. & Simon, A. E. Open reading frames of Turnip crinkle virus involved in satellite symptom expression and incompatibility with Arabidopsis thaliana ecotype Dijon. Mol. Plant Microbe Interact. 8, 979–987 (1995). es_ES
dc.description.references Gietz, R. D. & Woods, R. A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzym. 350, 87–96 (2002). es_ES
dc.description.references Nemeth, K. et al. Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev. 12, 3059–3073 (1998). es_ES
dc.description.references Knoester, M. et al. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA 95, 1933–1937 (1998). es_ES
dc.description.references Liu, Y., Schiff, M., Marathe, R. & Dinesh-Kumar, S. P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30, 415–429 (2002). es_ES
dc.description.references Fernandez-Pozo, N., Rosli, H. G., Martin, G. B. & Mueller, L. A. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol. Plant 8, 486–488 (2015). es_ES
dc.description.references Martínez-Pérez, M. et al. Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. Proc. Natl. Acad. Sci. USA 114, 10755–10760 (2017). es_ES
dc.description.references Powers, J. G. et al. A versatile assay for the identification of RNA silencing suppressors based on complementation of viral movement. Mol. Plant-Microbe Interact. 21(7), 879–890, https://doi.org/10.1094/MPMI-21-7-0879 (2008). es_ES
dc.description.references Pallas, V., Mas, P. & Sanchez-Navarro, J. A. Detection of plant RNA viruses by nonisotopic dot-blot hybridization. Methods Mol. Biol. 81, 461–468 (1998). es_ES
dc.description.references Navarro, J. A., Serra-Soriano, M. & Pallás, V. A Protocol to Measure the Extent of Cell-to-cell Movement of RNA Viruses in Planta. Bio-protocol 4, e1269 (2014). es_ES
dc.description.references Koressaar, T. et al. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34, 1937–1938 (2018). es_ES
dc.description.references Lilly, S. T., Drummond, R. S., Pearson, M. N. & MacDiarmid, R. M. Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Mol. Plant Microbe Interact. 24, 294–304 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem