- -

Electrochemical Degradation of Reactive Black 5 using two-different reactor configuration

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Electrochemical Degradation of Reactive Black 5 using two-different reactor configuration

Show full item record

Droguett, T.; Mora-Gómez, J.; García Gabaldón, M.; Ortega Navarro, EM.; Mestre, S.; Cifuentes, G.; Pérez-Herranz, V. (2020). Electrochemical Degradation of Reactive Black 5 using two-different reactor configuration. Scientific Reports. 10(1):1-11. https://doi.org/10.1038/s41598-020-61501-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176124

Files in this item

Item Metadata

Title: Electrochemical Degradation of Reactive Black 5 using two-different reactor configuration
Author: Droguett, Tamara Mora-Gómez, Julia García Gabaldón, Montserrat Ortega Navarro, Emma María Mestre, Sergio Cifuentes, Gerardo Pérez-Herranz, Valentín
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] Novel Sb-doped SnO2 ceramic electrodes sintered at different temperatures, are applied to the degradation of Reactive Black 5 in both divided and undivided electrochemical reactors. In the undivided reactor the ...[+]
Subjects: BDD anodes , Chemical oxygen demand , Discoloration , Electrochemical degradation , Reactive Black 5 , Sb-doped ceramic electrodes
Copyrigths: Reconocimiento (by)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-020-61501-5
Publisher:
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-020-61501-5
Project ID:
info:eu-repo/grantAgreement/MINISTERIO DE ECONOMIA Y EMPRESA//CTQ2015-65202-C2-1-R//CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/
info:eu-repo/grantAgreement/AEI//RTI2018-101341-B-C21-AR//ELECTROCHEMICAL CHARACTERIZATION OF CERAMIC ELECTRODES AND MEMBRANES AND APPLICATION TO PHOTOELECTROOXIDATION AND ELECTROFILTRATION PROCESSES/
Thanks:
The authors thank the financial support from the Ministerio de Economia y Competitividad (Spain) under projects CTQ2015-65202-C2-1-R and RTI2018-101341-B-C21, co-financed with FEDER funds.
Type: Artículo

References

Daneshvar, N., Oladegaragoze, A. & Djafarzadeh, N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. J. Hazard. Mater. 129, 116–122 (2006).

Şengil, I. A. & Özacar, M. The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. J. Hazard. Mater. 161, 1369–1376 (2009).

Bandala, E. R. et al. Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes. Chem. Eng. Process. Process Intensif. 47, 169–176 (2008). [+]
Daneshvar, N., Oladegaragoze, A. & Djafarzadeh, N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. J. Hazard. Mater. 129, 116–122 (2006).

Şengil, I. A. & Özacar, M. The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. J. Hazard. Mater. 161, 1369–1376 (2009).

Bandala, E. R. et al. Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes. Chem. Eng. Process. Process Intensif. 47, 169–176 (2008).

Ahmad, A. L. & Puasa, S. W. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chem. Eng. J. 132, 257–265 (2007).

Koyuncu, I. & Topacik, D. Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures. Sep. Purif. Technol. 33, 283–294 (2003).

Damodar, R. A., You, S. J. & Chou, H. H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. 172, 1321–1328 (2009).

Srivastava, H. P., Arthanareeswaran, G., Anantharaman, N. & Starov, V. M. Performance of modified poly(vinylidene fluoride) membrane for textile wastewater ultrafiltration. Desalination 282, 87–94 (2011).

Mook, W. T., Ajeel, M. A., Aroua, M. K. & Szlachta, M. The application of iron mesh double layer as anode for the electrochemical treatment of Reactive Black 5 dye. J. Environ. Sci. (China) 54, 184–195 (2017).

Tang, C. & Chen, V. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Res. 38, 2775–2781 (2004).

Aguedach, A., Brosillon, S., Morvan, J. & Lhadi, E. K. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl. Catal. B Environ. 57, 55–62 (2005).

Sahel, K. et al. Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B-Isotherm of adsorption, kinetic of decolorization and mineralization. Appl. Catal. B Environ. 77, 100–109 (2007).

Işik, M. & Sponza, D. T. A batch kinetic study on decolorization and inhibition of Reactive Black 5 and Direct Brown 2 in an anaerobic mixed culture. Chemosphere 55, 119–128 (2004).

El Bouraie, M. & El Din, W. S. Biodegradation of Reactive Black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustain. Environ. Res. 26, 209–216 (2016).

Meriç, S., Kaptan, D. & Ölmez, T. Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere 54, 435–441 (2004).

Dojčinović, B. P. et al. Decolorization of Reactive Black 5 using a Dielectric Barrier Discharge in the presence of inorganic salts. J. Serbian Chem. Soc. 77, 535–548 (2012).

Cerón-Rivera, M., Dávila-Jiménez, M. M. & Elizalde-González, M. P. Degradation of the textile dyes Basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes. Chemosphere 55, 1–10 (2004).

Yavuz, Y. & Shahbazi, R. Anodic oxidation of Reactive Black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Sep. Purif. Technol. 85, 130–136 (2012).

Vasconcelos, V. M., Ponce-De-León, C., Nava, J. L. & Lanza, M. R. V. Electrochemical degradation of RB-5 dye by anodic oxidation, electro-Fenton and by combining anodic oxidation-electro-Fenton in a filter-press flow cell. J. Electroanal. Chem. 765, 179–187 (2016).

Lucas, M. S. & Peres, J. A. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dye. Pigment. 71, 236–244 (2006).

Song, S., He, Z., Qiu, J., Xu, L. & Chen, J. Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution: An investigation of the effect of operational parameters. Sep. Purif. Technol. 55, 238–245 (2007).

Chang, S. H. et al. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process. J. Hazard. Mater. 175, 850–857 (2010).

Daneshvar, N., Salari, D. & Khataee, A. R. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A Chem. 157, 111–116 (2003).

Panizza, M. & Cerisola, G. Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl. Catal. B Environ. 75, 95–101 (2007).

Martínez-Huitle, C. A. & Brillas, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B Environ. 87, 105–145 (2009).

Panizza, M. & Cerisola, G. Electro-Fenton degradation of synthetic dyes. Water Res. 43, 339–44 (2009).

Kapałka, A., Fóti, G. & Comninellis, C. Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. J. Appl. Electrochem. 38, 7–16 (2008).

Panizza, M. & Cerisola, G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51, 191–199 (2005).

Panizza, M. & Cerisola, G. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 109, 6541–6569 (2009).

Brillas, E. & Martínez-Huitle, C. A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 166–167, 603–643 (2015).

Aquino, J. M., Pereira, G. F., Rocha-Filho, R. C., Bocchi, N. & Biaggio, S. R. Electrochemical degradation of a real textile effluent using boron-doped diamond or β-PbO2 as anode. J. Hazard. Mater. 192, 1275–1282 (2011).

Comninellis, C. & Pulgarin, C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 23, 108–112 (1993).

Zanta, C. L. P. S., Michaud, P.-A., Comninellis, C., De Andrade, A. R. & Boodts, J. F. C. Electrochemical oxidation of p-chlorophenol on SnO2 –Sb2O5 based anodes for wastewater treatment. J. Appl. Electrochem. 33, 1211–1215 (2003).

Kötz, R., Stucki, S. & Carcer, B. Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. J. Appl. Electrochem. 21, 14–20 (1991).

Polcaro, A. M., Palmas, S., Renoldi, F. & Mascia, M. On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment. J. Appl. Electrochem. 29, 147–151 (1999).

Martínez-Huitle, C. A. et al. Removal of the Pesticide Methamidophos from Aqueous Solutions by Electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD Electrodes. Environ. Sci. Technol. 42, 6929–6935 (2008).

Watts, R. J., Wyeth, M. S., Finn, D. D. & Teel, A. L. Optimization of Ti/SnO2–Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. J. Appl. Electrochem. 38, 31–37 (2007).

Zhuo, Q., Deng, S., Yang, B., Huang, J. & Yu, G. Efficient Electrochemical Oxidation of Perfluorooctanoate Using a Ti/SnO2-Sb-Bi Anode. Environ. Sci. Technol. 45, 2973–2979 (2011).

Lipp, L. & Pletcher, D. The preparation and characterization of tin dioxide coated titanium electrodes. Hecrrochimico Acta 42, 1091–1099 (1997).

Zuca, S., Terzi, M., Zaharescu, M. & Matiasovsky, K. Contribution to the study of SnO2-based ceramics. J. Mater. Sci. 26, 1673–1676 (1991).

Park, S.-Y., Mho, S.-I., Chi, E. O., Kwon, Y. U. & Park, H. L. Characteristics of Pt thin films on the conducting ceramics TiO and Ebonex (Ti4O7) as electrode materials. Thin Solid Films 258, 5–9 (1995).

Chen, G., Betterton, E. A. & Arnold, R. G. Electrolytic oxidation of trichloroethylene using a ceramic anode. J. Appl. Electrochem. 29, 961–970 (1999).

Scialdone, O., Galia, A. & Filardo, G. Electrochemical incineration of 1,2-dichloroethane: Effect of the electrode material. Electrochim. Acta 53, 7220–7225 (2008).

Bejan, D., Malcolm, J. D., Morrison, L. & Bunce, N. J. Mechanistic investigation of the conductive ceramic Ebonex® as an anode material. Electrochim. Acta 54, 5548–5556 (2009).

Zaky, A. M. & Chaplin, B. P. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment. Environ. Sci. Technol. 47, 6554–6563 (2013).

Zhang, C. et al. Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 228, 455–467 (2013).

Mora-Gómez, J. et al. Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceram. Int. 44, 2216–2222 (2018).

Mora-Gómez, J., Ortega, E., Mestre, S., Pérez-Herranz, V. & García-Gabaldón, M. Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Sep. Purif. Technol. 208, 68–75 (2019).

Montilla, F., Morallón, E., De Battisti, A. & Vázquez, J. L. Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. J. Phys. Chem. B 108, 5036–5043 (2004).

Zhang, L., Xu, L., He, J. & Zhang, J. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim. Acta 117, 192–201 (2014).

Martínez-Huitle, C. A., dos Santos, E. V., de Araújo, D. M. & Panizza, M. Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. J. Electroanal. Chem. 674, 103–107 (2012).

Correa-Lozano, B., Comninellis, C. & De Battisti, A. Service life of Ti/SnO2–Sb2O5 anodes. J. Appl. Electrochem. 27, 970–974 (1997).

Loge, F. J., Inouye, T. & Watts, R. J. Disinfection of Secondary Effluents Using Tin Oxide Anodes. Water Environ. Res. 78, 41–48 (2006).

Wu, W., Huang, Z.-H., Hu, Z.-T., He, C. & Lim, T.-T. High performance duplex-structured SnO2-Sb-CNT composite anode for bisphenol A removal. Sep. Purif. Technol. 179, 25–35 (2017).

Ding, H. yang, Feng, Y. jie & Liu, J. feng. Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition. Mater. Lett. 61, 4920–4923 (2007).

Chen, A. & Nigro, S. Influence of a Nanoscale Gold Thin Layer on Ti/SnO2-Sb2O5 Electrodes. J. Phys. Chem. B 107, 13341–13348 (2003).

Kang, S. F., Liao, C. H. & Hung, H. P. Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions. J. Hazard. Mater. 65, 317–333 (1999).

Feng, J., Hu, X., Yue, P. L., Zhu, H. Y. & Lu, G. Q. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction. Water Res. 37, 3776–3784 (2003).

Méndez-Martínez, A. J. et al. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochim. Acta 59, 140–149 (2012).

Jager, D., Kupka, D., Vaclavikova, M., Ivanicova, L. & Gallios, G. Degradation of Reactive Black 5 by electrochemical oxidation. Chemosphere 190, 405–416 (2018).

Chen, X., Chen, G. & Yue, P. L. Anodic oxidation of dyes at novel Ti/B-diamond electrodes. Chem. Eng. Sci. 58, 995–1001 (2003).

El-Ghenymy, A. et al. Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochim. Acta 130, 568–576 (2014).

Guenfoud, F., Mokhtari, M. & Akrout, H. Electrochemical degradation of malachite green with BDD electrodes: Effect of electrochemical parameters. Diam. Relat. Mater. 46, 8–14 (2014).

Koparal, A. S., Yavuz, Y., Gürel, C. & Öǧütveren, Ü. B. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode. J. Hazard. Mater. 145, 100–108 (2007).

Panakoulias, T., Kalatzis, P., Kalderis, D. & Katsaounis, A. Electrochemical degradation of Reactive Red 120 using DSA and BDD anodes. J. Appl. Electrochem. 40, 1759–1765 (2010).

Vasconcelos, V. M. et al. Electrochemical removal of Reactive Black 5 azo dye using non-commercial boron-doped diamond film anodes. Electrochim. Acta 178, 484–493 (2015).

García-Montaño, J., Domènech, X., García-Hortal, J. A., Torrades, F. & Peral, J. The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. J. Hazard. Mater. 154, 484–490 (2008).

Correa-Lozano, B., Comninellis, C. & De Battisti, A. Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique. J. Appl. Electrochem. 26, 683–688 (1996).

Marselli, B., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M. A. & Comninellis, C. Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes. J. Electrochem. Soc. 150, D79–D83 (2003).

Chen, X., Gao, F. & Chen, G. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation. J. Appl. Electrochem. 35, 185–191 (2005).

Guinea, E. et al. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim. Acta 55, 2101–2115 (2010).

Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A. & Panizza, M. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. Int. 21, 8336–8367 (2014).

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record