- -

Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Orenga, Sara es_ES
dc.contributor.author Llinares Palacios, Josep Vicent es_ES
dc.contributor.author Al Hassan, Mohamad es_ES
dc.contributor.author Fita, Ana es_ES
dc.contributor.author Collado, Francisco es_ES
dc.contributor.author Lisón, Purificación es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.date.accessioned 2021-11-05T12:37:13Z
dc.date.available 2021-11-05T12:37:13Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 0032-079X es_ES
dc.identifier.uri http://hdl.handle.net/10251/176128
dc.description.abstract [EN] Background and aims: Morphological and biochemical traits of four halophytes of the genus Limonium were analysed in plants sampled from salt marshes in SE Spain. This work aimed to explore the mechanism(s) behind the adaptation of these species to stressful habitats, with particular emphasis on responses to drought. Methods: Plants of each species together with soil samples were collected in summer, which is the most stressful season in the Mediterranean. Soil parameters and plant morphological traits were determined, and the levels of several biochemical stress markers in plants were measured using spectrophotometric assays. A multivariate analysis was performed to correlate soil and plant data. Results: Morphological characteristics regarding the underground system topology and several biochemical traits (higher foliar Ca2+, sucrose and glucose, and lower proline, glycine-betaine and fructose) clearly separate L. santapolense individuals from plants of the other three species. Conclusions: Drought tolerance of L. santapolense in the field is mostly dependent on morphological adaptations: when growing in an arid location, plants of this species develop long taproots that can extract water from the deep, moist layers of the soil. es_ES
dc.description.sponsorship This research was partly supported by the project AICO/2017/039 from Generalitat Valenciana. We are indebted to Dr. Inmaculada Bautista (Universitat Politècnica de Valencia, Spain) for her useful suggestions for improving the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Plant and Soil es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antioxidants es_ES
dc.subject Climate change es_ES
dc.subject Drought es_ES
dc.subject Endemics es_ES
dc.subject Osmolytes es_ES
dc.subject Salt marshes es_ES
dc.subject Soil analysis es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11104-020-04486-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2017%2F039//MECANISMOS DE TOLERANCIA A ESTRES HIDRICO Y SALINO EN PLANTAS ENDEMICA, RARAS O AMENAZADAS, E IMPLICACIONES PARA SU MANTENIMIENTO O REINTRODUCCION EN EL PARC NATURAL DE L'ALBUFERA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation González-Orenga, S.; Llinares Palacios, JV.; Al Hassan, M.; Fita, A.; Collado, F.; Lisón, P.; Vicente, O.... (2020). Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses. Plant and Soil. 449(1-2):267-284. https://doi.org/10.1007/s11104-020-04486-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11104-020-04486-4 es_ES
dc.description.upvformatpinicio 267 es_ES
dc.description.upvformatpfin 284 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 449 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\406501 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.description.references Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol Plant 53:243–248 es_ES
dc.description.references Al Hassan M, López-Gresa MP, Boscaiu M, Vicente O (2016) Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Funct Plant Biol 43:949–960 es_ES
dc.description.references Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicente O (2017) Unraveling salt tolerance mechanisms in halophytes: a comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Front Plant Sci 8:1438. https://doi.org/10.3389/fpls.2016.00473 es_ES
dc.description.references Alarcon JJ, Morales MA, Torrecillas A, Sánchez-Blanco MJ (1999) Growth, water relations and accumulation of organic and inorganic solutes in the halophyte Limonium latifolium cv. Avignon and its interspecific hybrid Limoniun caspia x Limonium latifolium cv. Beltlaard during salt stress. J Plant Physiol 154:795–780 es_ES
dc.description.references Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration – guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. Rome, Italy: Food and agriculture Organization of the United Nations es_ES
dc.description.references Alvarez-Flores R, Nguyen-Thi-Truc N, Peredo-Parada S, Joffre R, Winkel T (2018) Rooting plasticity in wild and cultivated Andean Chenopodium species under soil water deficit. Plant Soil 425:479–492 es_ES
dc.description.references Álvarez-Rogel J, Hernández J, Ortiz Silla R, Alcaraz F (1997) Patterns of spatial and temporal variations in soil salinity: example of a salt marsh in a semiarid climate. Arid Soil Res Rehabil 11:315–329 es_ES
dc.description.references Álvarez-Rogel J, Alcaraz Ariza F, Ortiz Silla R (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20:357–372 es_ES
dc.description.references Antonelli-Ushirobira TM, Blainski A, Gancedo NC, Gaburo F, Cardoso KAK, Leite-Mello EVD, Milaneze-Gutierre MA (2015) Morpho-anatomical study of rhizome of Limonium brasiliense. Rev Bras 25:320–327 es_ES
dc.description.references Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169e193 es_ES
dc.description.references Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207 es_ES
dc.description.references Blainski A, Lopes GC, de Mello JCP (2013) Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18:6852–6865 es_ES
dc.description.references Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465 es_ES
dc.description.references Bresler E, Dagan G, Hanks RJ (1982) Análisis estadístico del rendimiento de cultivos bajo riego de fuente de línea controlada. Soil Sci Soc Am J 46:841–847 es_ES
dc.description.references Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328 es_ES
dc.description.references Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257 es_ES
dc.description.references Dubois M, Gilles KA, Hamilton JK, Reberd PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 es_ES
dc.description.references Eber W, Veenhuis B (1991) Natalität und Mortalität bei Limonium vulgare. In: Schmid B, Stöcklin J (eds) Populationsbiologie der Pflanzen. Birkhäuser, Basel, pp 62–73 es_ES
dc.description.references Erben M (1993) Limonium Mill. In: Castroviejo S et al (eds) Flora Ibérica 3. Real Jardín Botánico, CSIC 2–143, Madrid es_ES
dc.description.references Falchi M, Bertelli A, Lo Scalzo R, Morassut M, Morelli R, Das S, Cui J, Das DK (2006) Comparison of cardioprotective abilities between the flesh and skin of grapes. J Agric Food Chem 54:6613–6622 es_ES
dc.description.references Ferriol M, Pérez I, Merle H, Boira H (2006) Ecological germination requirements of the aggregate species Teucrium pumilum (Labiatae) endemic to Spain. Plant Soil 284:205–216 es_ES
dc.description.references Fita A, Alonso J, Martínez I, Avilés JA, Mateu MC, Rodríguez-Burruezo A (2013) Evaluating Capsicum spp. root architecture under field conditions. Breakthroughs in the genetics and breeding of Capsicum and eggplant (Proceedings of the 15 Eucarpia meeting) 373–376 es_ES
dc.description.references Fitter AH (1987) An architectural approach to the comparative ecology of plant root system. New Phytol 106:61–77 es_ES
dc.description.references Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963 es_ES
dc.description.references Flowers TJ, Yeo AR (1986) Ion relations of plants drought and salinity. Aust J Plant Physiol 13:75–91 es_ES
dc.description.references Franco JA, Vicente MJ, Bañon S, Miralles J (2011) Root development in horticultural plants grown under abiotic stress conditions – a review. J Hortic Sci Biotechnol 86:543–556 es_ES
dc.description.references Fry EL, Evans AL, Sturock CJ, Bullock JM, Bradgett RD (2018) Root architecture governs plasticity in response to drought. Plant Soil 433:189–200 es_ES
dc.description.references Giacobbe A (1938) Schema di una teoria ecologica per la classificazione della vegetatione italiana. Nouvo Giornale Botanico Italiano 45:37–121 es_ES
dc.description.references Giacobbe A (1959) Nouvelles recherces écologiques sur l’aridité dans les pays de la Méditerranée occidentale. Nat Monsp 11:7–28 es_ES
dc.description.references González-Orenga S, Al Hassan M, Llinares JV, Lisón P, López-Gresa MP, Verdeguer M, Vicente O, Boscaiu M (2019) Qualitative and quantitative differences in osmolytes accumulation and antioxidant activities in response to water deficit in four Mediterranean Limonium species. Plants 8(11):506 es_ES
dc.description.references Greuter W, Burdet HM, Long G (1989) Med-checklist. In: Genève. Conservatoire et Jardin Botaniques de la Ville de Genève, Genève es_ES
dc.description.references Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307 es_ES
dc.description.references Grigore MN, Toma C (2017) Definition and classification of halophytes. In: Grigore MN, Toma C (eds) Anatomical adaptations of halophytes. A review of classic literature and recent findings. Springer International e-book 3–28, New York es_ES
dc.description.references Hadi MR, Karimi N (2012) The role of calcium in plants’ salt tolerance. J Plant Nutr 35:2037–2054 es_ES
dc.description.references Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants 19:7. https://doi.org/10.1093/aobpla/plv004 es_ES
dc.description.references Hanson DA, Rathinasabapathi B, Chamberlin B, Gage DA (1991) Comparative physiological evidence that ß-alanin betaine and choline-O-sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiol 97:1199–1205 es_ES
dc.description.references Hasegawa PH, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499 es_ES
dc.description.references Hazelton PA, Murphy BW (2007) Interpreting soil test results: what do all the numbers mean? 1 CSIRO Publishing, Melbourne es_ES
dc.description.references Hill MO, Preston CD, Roy DB (2004) PLANTATT – attributes of British and Irish plants: status, size, life history, geography and habitats. Centre for ecology and hydrology, Huntingdon es_ES
dc.description.references Hodges DM, De Long JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive- substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611 es_ES
dc.description.references IGME (1973). Mapa geológico de Elche (Hoja 893). Available at http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=893. Accessed 20 Nov 2019 es_ES
dc.description.references IGME (1974). Mapa geológico de Valencia (Hoja 722). Available at http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=722. Accessed 20 Nov 2018 es_ES
dc.description.references Leng BY, Yuan F, Dong XX, Wang J, Wang BS (2018) Distribution pattern and salt excretion rate of salt glands in two recretohalophyte species of Limonium (Plumbaginaceae). S Afr J Bot 115:74–80 es_ES
dc.description.references Liu X, Grieve C (2009) Accumulation of chiro-inositol and other nonstructural carbohydrates in Limonium species in response to saline irrigation waters. J Am Soc Hortic Sci 134:329–336 es_ES
dc.description.references Magalhães TM, Seifert T (2015) Below- and aboveground architecture of Androstachys johnsonii Prain: topological analysis of the root and shoot systems. Plant Soil 394:257–269 es_ES
dc.description.references Mateo C, Crespo MB (2014) Claves Ilustradas para la Flora Valenciana. Jolube Consultor y Editor Botánico, Jaca es_ES
dc.description.references Monllor M, Soriano P, Llinares JV, Boscaiu M, Estrelles E (2018) Assessing effects of temperature change on four Limonium species from threatened Mediterranean salt-affected habitats. Not Bot Horti Agrobo 46:286–291 es_ES
dc.description.references Nawaz K, Ashraf M (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci 196:28–37 es_ES
dc.description.references Prieto I, Padilla FM, Armas C, Pugnaire FI (2011) The role of hydraulic lift on seedling establishment under a nurse plant species in a semi-arid environment. Perspect Plant Ecol 13:181–187 es_ES
dc.description.references Rhoades JD (1982) Cation exchange capacity. In: Page AL (ed) Methods of soil analysis. Part 2: chemical and microbiological properties, 2nd edn, pp 149–157 es_ES
dc.description.references Rivas-Martínez S, Rivas-Saenz S (1996-2018) Worldwide bioclimatic classification system, Phytosociological Research Center, Spain. Available at http://www.globalbioclimatics.org. Accessed 20 Nov 2018 es_ES
dc.description.references Sagar B, Kedare B, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48:412–422 es_ES
dc.description.references Schmidt JE, Gaudin ACM (2017) Toward an integrated root ideotype for irrigated systems. Trends Plant Sci 22:433–443 es_ES
dc.description.references SIAR (Sistema de Información Agroclimática para Regadío) (2018). Benifaio and Elx agro-meteorological stations. Available at http://www.magrama.gob.es/es/agua/temas/observatorio-del-regadio-espanol/sistema-de-informacion-agroclimatica-para-el-regadio/. Accessed 15 Jan 2019 es_ES
dc.description.references Soil Survey Division Staff (1993) Soil survey manual. USDA. Handb. No. 18. GPO, Washington, DC es_ES
dc.description.references Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51 es_ES
dc.description.references Suzuki JI, Stuefer JF (1999) On the ecological and evolutionary significance of storage in clonal plants. Plant Spec Biol 14:11–17 es_ES
dc.description.references Thorne KM, Takekava JY, Elliot-Fisk DL (2012) Ecological effects of climate change on salt marsh wildlife: a case study from a highly urbanized estuary. J Coast Res 28(6):1477–1487 es_ES
dc.description.references Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38 es_ES
dc.description.references Weimberg R (1987) Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol Plant 70:381–388 es_ES
dc.description.references Wyn-Jones RG, Gorham J (2002) Intra- and inter-cellular compartmentation of ions. In: Läuchli A, Lüttge U (eds) Salinity: environment — plants — molecules. Kluwer Academic Publishers, Dordrecht, pp 159–180 es_ES
dc.description.references Yáñez J (1989) Análisis de suelos y su interpretación. Horticultura 49:75–89 es_ES
dc.description.references Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559 es_ES
dc.description.references Zia S, Egan T, Khan MA (2008) Growth and selective ion transport of Limonium stocksii under saline conditions. Pak J Bot 40:697–709 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem