Mostrar el registro sencillo del ítem
dc.contributor.author | Vilanova Navarro, Santiago | es_ES |
dc.contributor.author | Alonso-Martín, David | es_ES |
dc.contributor.author | Gramazio, Pietro | es_ES |
dc.contributor.author | Plazas Ávila, María de la O | es_ES |
dc.contributor.author | García-Fortea, Edgar | es_ES |
dc.contributor.author | Ferrante, Paola | es_ES |
dc.contributor.author | Schmidt, Maximilian | es_ES |
dc.contributor.author | Díez Niclós, Mª José Teresa De Jesús | es_ES |
dc.contributor.author | Usadel, Björn | es_ES |
dc.contributor.author | Giuliano, Giovanni | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.date.accessioned | 2021-11-05T12:37:14Z | |
dc.date.available | 2021-11-05T12:37:14Z | |
dc.date.issued | 2020-08-10 | es_ES |
dc.identifier.issn | 1746-4811 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176129 | |
dc.description.abstract | [EN] Background The use of sequencing and genotyping platforms has undergone dramatic improvements, enabling the generation of a wealth of genomic information. Despite this progress, the availability of high-quality genomic DNA (gDNA) in sufficient concentrations is often a main limitation, especially for third-generation sequencing platforms. A variety of DNA extraction methods and commercial kits are available. However, many of these are costly and frequently give either low yield or low-quality DNA, inappropriate for next generation sequencing (NGS) platforms. Here, we describe a fast and inexpensive DNA extraction method (SILEX) applicable to a wide range of plant species and tissues. Results SILEX is a high-throughput DNA extraction protocol, based on the standard CTAB method with a DNA silica matrix recovery, which allows obtaining NGS-quality high molecular weight genomic plant DNA free of inhibitory compounds. SILEX was compared with a standard CTAB extraction protocol and a common commercial extraction kit in a variety of species, including recalcitrant ones, from different families. In comparison with the other methods, SILEX yielded DNA in higher concentrations and of higher quality. Manual extraction of 48 samples can be done in 96 min by one person at a cost of 0.12 euro/sample of reagents and consumables. Hundreds of tomato gDNA samples obtained with either SILEX or the commercial kit were successfully genotyped with Single Primer Enrichment Technology (SPET) with the Illumina HiSeq 2500 platform. Furthermore, DNA extracted fromSolanum elaeagnifoliumusing this protocol was assessed by Pulsed-field gel electrophoresis (PFGE), obtaining a suitable size ranges for most sequencing platforms that required high-molecular-weight DNA such as Nanopore or PacBio. Conclusions A high-throughput, fast and inexpensive DNA extraction protocol was developed and validated for a wide variety of plants and tissues. SILEX offers an easy, scalable, efficient and inexpensive way to extract DNA for various next-generation sequencing applications including SPET and Nanopore among others. | es_ES |
dc.description.sponsorship | This research has been funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 677379 (Linking genetic resources, genomes and phenotypes of Solanaceous crops; G2P-SOL). David Alonso is grateful to Universitat Politecnica de Valencia for a predoctoral (PAID-01-16) contract under the Programa de Ayudas de Investigacion y Desarrollo initiative. Mariola Plazas is grateful to Generalitat Valenciana and Fondo Social Europeo for a postdoctoral grant (APOSTD/2018/014). Pietro Gramazio is grateful to Japan Society for the Promotion of Science for a Postdoctoral Grant (P19105, FY2019 JSPS Postdoctoral Fellowship for Research in Japan (Standard)). The Spanish Ministerio de Educacion, Cultura y Deporte funded a predoctoral fellowship granted to Edgar Garcia-Fortea (FPU17/02389). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | Plant Methods | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | DNA extraction | es_ES |
dc.subject | CTAB protocol | es_ES |
dc.subject | Silica matrix | es_ES |
dc.subject | Contaminant-free DNA | es_ES |
dc.subject | High-molecular-weight DNA | es_ES |
dc.subject | Next-generation sequencing | es_ES |
dc.subject | High-throughput genotyping | es_ES |
dc.subject | Recalcitrant species | es_ES |
dc.subject | SPET | es_ES |
dc.subject | Nanopore | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | SILEX: a fast and inexpensive high-quality DNA extraction method suitable for multiple sequencing platforms and recalcitrant plant species | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13007-020-00652-y | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-16/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JSPS//P19105/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014//Contratación investigador postdoctoral GVA-Plazas Avila. Proyecto: Desarrollo de materiales de berenjena con introgresiones silv/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU17%2F02389//AYUDA CONTRATO PREDOCTORAL FPU-GARCIA FORTEA. PROYECTO: UTILIZACION DE ESPECIES SILVESTRES RELACIONADAS PARA LA MEJORA GENETICA DE LA BERENJENA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Vilanova Navarro, S.; Alonso-Martín, D.; Gramazio, P.; Plazas Ávila, MDLO.; García-Fortea, E.; Ferrante, P.; Schmidt, M.... (2020). SILEX: a fast and inexpensive high-quality DNA extraction method suitable for multiple sequencing platforms and recalcitrant plant species. Plant Methods. 16(1):1-11. https://doi.org/10.1186/s13007-020-00652-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13007-020-00652-y | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 32793297 | es_ES |
dc.identifier.pmcid | PMC7419208 | es_ES |
dc.relation.pasarela | S\431061 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Japan Society for the Promotion of Science | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Scheben A, Batley J, Edwards D. Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J. 2017;15:149–61. | es_ES |
dc.description.references | Jung H, Winefield C, Bombarely A, Prentis P, Waterhouse P. Tools and strategies for long-read sequencing and de novo assembly of plant genomes. Trends Plant Sci. 2019;24:700–24. | es_ES |
dc.description.references | Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6:e19379. | es_ES |
dc.description.references | Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3:e3376. | es_ES |
dc.description.references | Scaglione D, Pinosio S, Marroni F, Centa E, Fornasiero A, Magris G, Scalabrin S, Cattonaro F, Taylor G, Morgante M. Single primer enrichment technology as a tool for massive genotyping: a benchmark on black poplar and maize. Ann Bot. 2019;124:543–51. | es_ES |
dc.description.references | Barchi L, Acquadro A, Alonso D, Aprea G, Bassolino L, Demurtas O, Ferrante P, Gramazio P, Mini P, Portis E, Scaglione D, Toppino L, Vilanova S, Díez MJ, Rotino G, Lanteri S, Prohens J, Giuliano G. Single primer enrichment technology (SPET) for high-throughput genotyping in tomato and eggplant germplasm. Front Plant Sci. 2019;10:1005. | es_ES |
dc.description.references | Vaillancourt B, Buell CR. High molecular weight DNA isolation method from diverse plant species for use with Oxford Nanopore sequencing. bioRxiv. 2019;1:783159. | es_ES |
dc.description.references | Anderson CB, Franzmayr BK, Hong SW, Larking AC, van Stijn TC, Tan R, Moraga R, Faville M, Griffiths A. Protocol: a versatile, inexpensive, high-throughput plant genomic DNA extraction method suitable for genotyping-by-sequencing. Plant Methods. 2018;14:75. | es_ES |
dc.description.references | Rana MM, Aycan M, Takamatsu T, Kaneko K, Mitsui T, Itoh K. Optimized nuclear pellet method for extracting next-generation sequencing quality genomic DNA from fresh leaf tissue. Methods Protoc. 2019;2:54. | es_ES |
dc.description.references | Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5. | es_ES |
dc.description.references | Healey A, Furtado A, Cooper T, Henry RJ. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods. 2014;10:21. | es_ES |
dc.description.references | Martínez-González CR, Ramírez-Mendoza R, Jiménez-Ramírez J, Gallegos-Vázquez C, Luna-Vega I. Improved method for genomic DNA extraction for Opuntia Mill. (Cactaceae). Plant Methods. 2017;13:82. | es_ES |
dc.description.references | Barbier FF, Chabikwa TG, Ahsan MU, Cook SE, Powell R, Tanurdzic M, Beveridge C. A phenol/chloroform-free method to extract nucleic acids from recalcitrant, woody tropical species for gene expression and sequencing. Plant Methods. 2019;15:62. | es_ES |
dc.description.references | Souza DC, Teixeira TA. A simple and effective method to obtain high DNA quality and quantity from Cerrado plant species. Mol Biol Rep. 2019;46:4611–5. | es_ES |
dc.description.references | Kovačević N. Magnetic beads based nucleic acid purification for molecular biology applications. Sample preparation techniques for soil, plant, and animal samples. In: Micic M, editor. Springer Protoc Handb. 2016;53–67. | es_ES |
dc.description.references | Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population genomic approaches for weed science. Plants. 2019;8:354. | es_ES |
dc.description.references | Zhou Y, Zhang Y, He W, Wang J, Peng F, Huang L, Zhao S, Deng W. Rapid regeneration and reuse of silica columns from PCR purification and gel extraction kits. Sci Rep. 2018;8:12870. | es_ES |
dc.description.references | Park HJ, Cho H, Jung HS, Cho BH, Lee MY. Development of a DNA isolation device using poly(3,4-dihydroxy-l-phenylalanine)-coated swab for on-site molecular diagnostics. Sci Rep. 2019;9:8144. | es_ES |
dc.description.references | Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28:495–503. | es_ES |
dc.description.references | Carter MJ, Milton ID. An inexpensive and simple method for DNA purifications on silica particles. Nucleic Acids Res. 1993;21:1044. | es_ES |
dc.description.references | Carvalho J, Puertas G, Gaspar J, Azinheiro S, Diéguez L, Garrido-Maestu A, Vázquez M, Barros-Velázquez J, Cardoso S, Padro M. Highly efficient DNA extraction and purification from olive oil on a washable and reusable miniaturized device. Anal Chim Acta. 2018;1020:30–40. | es_ES |
dc.description.references | Branton D, Deamer D, Quick J, Loman NJ. DNA extraction strategies for nanopore sequencing. Nanopore Seq. World Sci. 2019;1:91–105. | es_ES |
dc.description.references | Cheng H, Zhang K, Libera J, De La Cruz M, Bedzyk M. Polynucleotide adsorption to negatively charged surfaces in divalent salt solutions. Biophys J. 2016;90:1164–74. | es_ES |
dc.description.references | Shi B, Shin Y, Hassanali A, Singer S. DNA Binding to the Silica Surface. J Phys Chem B. 2015;119:11030–40. | es_ES |
dc.description.references | Katevatis C, Fan A, Klapperich CM. Low concentration DNA extraction and recovery using a silica solid phase. PLoS ONE. 2017;12:e0176848. | es_ES |
dc.description.references | Green MR, Sambrook J. Isolation and quantification of DNA. Cold Spring Harb Protoc. 2018;2018:403–14. | es_ES |
dc.description.references | Toole K, Roffey P, Young E, Cho K, Shaw T, Smith M, Blagojevic N. Evaluation of commercial forensic DNA extraction kits for decontamination and extraction of DNA from biological samples contaminated with radionuclides. Forensic Sci Int. 2019;302:109867. | es_ES |
dc.description.references | Piskata Z, Servusova E, Babak V, Nesvadbova M, Borilova G. The quality of DNA isolated from processed food and feed via different extraction procedures. Molecules. 2019;24:1188. | es_ES |
dc.description.references | Xia Y, Chen F, Du Y, Liu C, Bu G, Xin Y, Boye L. A modified SDS-based DNA extraction method from raw soybean. Biosci Rep. 2019;39:2. | es_ES |
dc.description.references | Akkurt M. Comparison between modified DNA extraction protocols and commercial isolation kits in grapevine (Vitis vinifera L.). Genet Mol Res. 2012;11:2343–51. | es_ES |
dc.description.references | Marsal G, Baiges I, Canals JM, Zamora F, Fort F. A Fast, efficient method for extracting DNA from leaves, stems, and seeds of Vitis vinifera L. Am J Enol Vitic. 2011;62:376–81. | es_ES |
dc.description.references | Abdel-Latif A, Osman G. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods. 2017;13:1. | es_ES |
dc.description.references | Huang J, Ge X, Sun M. Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA. Biotechniques. 2000;28:432–4. | es_ES |
dc.description.references | Rogstad SH. Plant DNA extraction using silica. Plant Mol Biol Report. 2012;21:463. | es_ES |
dc.description.references | Li J-F, Li L, Sheen J. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology. Plant Methods. 2010;6:1. | es_ES |
dc.description.references | Li J-F, Sheen J. DNA purification from multiple sources in plant research with homemade silica resins. Humana Press. 2012;862:53–9. | es_ES |
dc.description.references | Vandeventer PE, Lin JS, Zwang TJ, Nadim A, Johal MS, Niemz A. Multiphasic DNA adsorption to silica surfaces under varying buffer, pH, and ionic strength conditions. J Phys Chem B. 2012;116:5661–70. | es_ES |
dc.description.references | Boesenberg-Smith KA, Pessarakli MM, Wolk DM. Assessment of DNA yield and purity: an overlooked detail of PCR troubleshooting. Clin Microbiol Newsl. 2012;34:1–6. | es_ES |
dc.description.references | Emaus MN, Clark KD, Hinners P, Anderson JL. Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification. Anal Bioanal Chem. 2018;410:4135–44. | es_ES |
dc.description.references | Dumschott K, Schmidt MHW, Chawla HS, Snowdon R, Usadel B. Oxford Nanopore sequencing: new opportunities for plant genomics? J Exp Bot. 2020;eraa263 | es_ES |
dc.description.references | Knapp S, Sagona E, Carbonell AKZ, Chiarini F. A revision of the Solanum elaeagnifolium clade (Elaeagnifolium clade; subgenus Leptostemonum, Solanaceae). PhytoKeys. 2017;84:1–104. | es_ES |
dc.description.references | García-Fortea E, Gramazio P, Vilanova S, Fita A, Mangino G, Villanueva G, Arrones A, Knapp S, Prohens J, Plazas M. First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Sci Hort. 2019;246:563–73. | es_ES |
dc.description.references | Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5:3299–314. | es_ES |
dc.description.references | Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag; 2016. | es_ES |
dc.description.references | Ponti G, Maccaferri M, Manfredini M, Kaleci S, Mandrioli M, Pellacani G, Ozben T, Depenni R, Bianchi G, Pirola G, Tomasi A. The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients. Clin Chim Acta. 2018;479:14–9. | es_ES |
dc.description.references | Lakshmi R, Baskar V, Ranga U. Extraction of superior-quality plasmid DNA by a combination of modified alkaline lysis and silica matrix. Anal Biochem. 1999;272:109–12. | es_ES |
dc.description.references | Taylor JI, Hurst CD, Davies MJ, Sachsinger N, Bruce IJ. Application of magnetite and silica–magnetite composites to the isolation of genomic DNA. J Chromatogr A. 2000;890:159–66. | es_ES |
dc.description.references | Prodělalová J, Rittich B, Španová A, Petrová K, Beneš MJ. Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. J Chromatogr A. 2004;1056:43–8. | es_ES |
dc.description.references | Shan Z, Jiang Y, Guo M, Bennett JC, Li X, Tian H, Oakes K, Zhang, Zhou Y, Huang Q, Chen H. Promoting DNA loading on magnetic nanoparticles using a DNA condensation strategy. Colloids Surfaces B Biointerfaces. 2015;125:247–54. | es_ES |
dc.description.references | Greco M, Sáez C, Brown M, Bitonti M. A simple and effective method for high quality co-extraction of genomic DNA and total RNA from low biomass Ectocarpus siliculosus, the model brown alga. PLoS ONE. 2014;9:e96470. | es_ES |
dc.description.references | Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitor – occurrence, properties and removal. J Appl Microbiol. 2012;113:1014–26. | es_ES |
dc.description.references | Demeke T, Adams RP. The effects of plant polysaccharides and buffer additives on PCR. Biotechniques. 1992;12:332–4. | es_ES |
dc.description.references | Asami DK, Hong YJ, Barrett DM, Mitchell AE. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J Agric Food Chem. 2003;51:1237–41. | es_ES |
dc.description.references | Schmidt M, Vogel A, Denton A, Istace B, Wormit A, van de Geest H, Bolger M, Alseekh S, Maß J, Pfaff C, Schurr U, Chetelat R, Maumus F, Aury J, Koren S, Fernie A, Zamir D, Bolger A, Usadel B. De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant cell. 2017;29:2336–48. | es_ES |