Mostrar el registro sencillo del ítem
dc.contributor.author | Puchalt-Rodríguez, Joan Carles | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.contributor.author | Ivorra Martínez, Eugenio | es_ES |
dc.contributor.author | Genovés Martínez, Salvador | es_ES |
dc.contributor.author | Martínez, Roberto | es_ES |
dc.contributor.author | Martorell Guerola, Patricia | es_ES |
dc.date.accessioned | 2021-11-05T12:57:30Z | |
dc.date.available | 2021-11-05T12:57:30Z | |
dc.date.issued | 2020-05-26 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176162 | |
dc.description.abstract | [EN] Automated lifespan determination for C. elegans cultured in standard Petri dishes is challenging. Problems include occlusions of Petri dish edges, aggregation of worms, and accumulation of dirt (dust spots on lids) during assays, etc. This work presents a protocol for a lifespan assay, with two image-processing pipelines applied to different plate zones, and a new data post-processing method to solve the aforementioned problems. Specifically, certain steps in the culture protocol were taken to alleviate aggregation, occlusions, contamination, and condensation problems. This method is based on an active illumination system and facilitates automated image sequence analysis, does not need human threshold adjustments, and simplifies the techniques required to extract lifespan curves. In addition, two image-processing pipelines, applied to different plate zones, were employed for automated lifespan determination. The first image-processing pipeline was applied to a wall zone and used only pixel level information because worm size or shape features were unavailable in this zone. However, the second image-processing pipeline, applied to the plate centre, fused information at worm and pixel levels. Simple death event detection was used to automatically obtain lifespan curves from the image sequences that were captured once daily throughout the assay. Finally, a new post-processing method was applied to the extracted lifespan curves to filter errors. The experimental results showed that the errors in automated counting of live worms followed the Gaussian distribution with a mean of 2.91% and a standard deviation of +/- 12.73% per Petri plate. Post-processing reduced this error to 0.54 +/- 8.18% per plate. The automated survival curve incurred an error of 4.62 +/- 2.01%, while the post-process method reduced the lifespan curve error to approximately 2.24 +/- 0.55%. | es_ES |
dc.description.sponsorship | This study was also supported by the CDTI agency of the Spanish Ministry of Economy and Competitiveness with CIEN project SMARTFOODS, Universitat PolitAcnica de Valencia with Project 20170020-UPV, Plan Nacional de I + D with Project RTI2018-094312-B-I00 and by European FEDER funds. ADM Nutrition, Biopolis SL and Archer Daniels Midland provided support in the form of salaries for authors P. M. Guerola and S. G. Martinez. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-020-65619-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//20170020-UPV/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTI2018-094312-B-I00-AR//MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Puchalt-Rodríguez, JC.; Sánchez Salmerón, AJ.; Ivorra Martínez, E.; Genovés Martínez, S.; Martínez, R.; Martorell Guerola, P. (2020). Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter. Scientific Reports. 10(1):1-14. https://doi.org/10.1038/s41598-020-65619-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-020-65619-4 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 32457411 | es_ES |
dc.identifier.pmcid | PMC7251096 | es_ES |
dc.relation.pasarela | S\413929 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Centro para el Desarrollo Tecnológico Industrial | es_ES |
dc.description.references | Brenner, S. The Genetics Of Caenorhabditis Elegans. Genetics 77, 71–94 (1974). | es_ES |
dc.description.references | Tissenbaum, H. A. & Using, C. Elegans for aging research. Invertebr. Reproduction & Dev. 59, 59–63, https://doi.org/10.1080/07924259.2014.940470 (2015). | es_ES |
dc.description.references | Amrit, F. R. G., Ratnappan, R., Keith, S. A. & Ghazi, A. The C. elegans lifespan assay toolkit. Methods 68, 465–475, https://doi.org/10.1016/j.ymeth.2014.04.002 (2014). | es_ES |
dc.description.references | Guarente, L. & Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 408, 255 (2000). | es_ES |
dc.description.references | Hosono, R. Age dependent changes in the behavior of Caenorhabditis elegans on attraction to Escherichia coli. Exp. Gerontol. 13, 31–36, https://doi.org/10.1016/0531-5565(78)90027-X (1978). | es_ES |
dc.description.references | Hosono, R. Sterilization and growth inhibition of Caenorhabditis elegans by 5-fluorodeoxyuridine. Exp. Gerontol. 13, 369–373, https://doi.org/10.1016/0531-5565(78)90047-5 (1978). | es_ES |
dc.description.references | Kenyon, C. J. The genetics of ageing. Nature 464, 504 (2010). | es_ES |
dc.description.references | Klass, M. R. Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429, https://doi.org/10.1016/0047-6374(77)90043-4 (1977). | es_ES |
dc.description.references | Walker, D. W., McColl, G., Jenkins, N. L., Harris, J. & Lithgow, G. J. Evolution of lifespan in C. elegans. Nature 405, 296–297, https://doi.org/10.1038/35012693 (2000). | es_ES |
dc.description.references | Hertweck, M. & Baumeister, R. Automated assays to study longevity in C. elegans. In Mechanisms of Ageing and Development 126, 139–145, https://doi.org/10.1016/j.mad.2004.09.010 (2005). | es_ES |
dc.description.references | Puckering, T. et al. Automated Wormscan. F1000Research 6, 192, https://doi.org/10.12688/f1000research.10767.2 (2017). | es_ES |
dc.description.references | Stroustrup, N. et al. The Caenorhabditis elegans Lifespan Machine. Nat. methods 10, 665–70, https://doi.org/10.1038/nmeth.2475 NIHMS150003 (2013). | es_ES |
dc.description.references | Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592–U112, https://doi.org/10.1038/nmeth.1625 (2011). | es_ES |
dc.description.references | Puchalt, J. C., Sánchez-Salmerón, A.-J., Martorell Guerola, P. & Genovés Martínez, S. Active backlight for automating visual monitoring: An analysis of a lighting control technique for Caenorhabditis elegans cultured on standard Petri plates. Plos One 14, e0215548 (2019). | es_ES |
dc.description.references | Chen, W. et al. Segmenting Microscopy Images of Multi-Well Plates Based on Image Contrast. Microsc. Microanal. 23, 932–937, https://doi.org/10.1017/S1431927617012375 (2017). | es_ES |
dc.description.references | Cronin, C. J. et al. An automated system for measuring parameters of nematode sinusoidal movement. BMC GENETICS 6, https://doi.org/10.1186/1471-2156-6-5 (2005). | es_ES |
dc.description.references | Fontaine, E., Burdick, J. & Barr, A. Automated Tracking of Multiple C. Elegans. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 3716–3719, https://doi.org/10.1109/IEMBS.2006.260657 (2006). | es_ES |
dc.description.references | Geng, W., Cosman, P., Baek, J.-H., Berry, C. C. & Schafer, W. R. Quantitative Classification and Natural Clustering of Caenorhabditis elegans Behavioral Phenotypes. Genetics 165, 1117 LP–1126 (2003). | es_ES |
dc.description.references | Geng, W., Cosman, P., Berry, C. C., Feng, Z. & Schafer, W. R. Automatic tracking, feature extraction and classification of C. elegans phenotypes. IEEE Transactions on Biomed. Eng. 51, 1811–1820, https://doi.org/10.1109/TBME.2004.831532 (2004). | es_ES |
dc.description.references | Jung, S. K., Aleman-Meza, B., Riepe, C. & Zhong,W. QuantWorm: A comprehensive software package for Caenorhabditis elegans phenotypic assays. Plos One 9, https://doi.org/10.1371/journal.pone.0084830 (2014). | es_ES |
dc.description.references | Kainmueller, D., Jug, F., Rother, C. & Myers, G. Active Graph Matching for Automatic Joint Segmentation and Annotation of C. elegans BT - Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. 81–88 (Springer International Publishing, Cham, 2014). | es_ES |
dc.description.references | Mathew, M. D., Mathew, N. D. & Ebert, P. R. WormScan: A Technique for High-Throughput Phenotypic Analysis of Caenorhabditis elegans. Plos One 7, https://doi.org/10.1371/journal.pone.0033483 (2012). | es_ES |
dc.description.references | Raviv, T. R. et al. Morphology-Guided Graph Search for Untangling Objects: C. elegans Analysis BT - Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. 634–641 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010). | es_ES |
dc.description.references | Restif, C. et al. CeleST: Computer Vision Software for Quantitative Analysis of C. elegans Swim Behavior Reveals Novel Features of Locomotion. Plos Comput. Biol. 10, https://doi.org/10.1371/journal.pcbi.1003702 (2014). | es_ES |
dc.description.references | Roussel, N., Morton, C. A., Finger, F. P. & Roysam, B. A Computational Model for C. elegans Locomotory Behavior: Application to Multiworm Tracking. IEEE Transactions on Biomed. Eng. 54, 1786–1797, https://doi.org/10.1109/TBME.2007. 894981 (2007). | es_ES |
dc.description.references | Tsechpenakis, G., Bianchi, L., Metaxas, D. N. & Driscoll, M. A novel computational approach for simultaneous tracking and feature extraction of C. elegans populations in fluid environments. IEEE Transactions on Biomed. Eng. 55, 1539–1549, https://doi.org/10.1109/TBME.2008.918582 (2008). | es_ES |
dc.description.references | Wählby, C. et al. An image analysis toolbox for high-throughput C. elegans assays. Nat. methods 9, 714–6, https://doi.org/10.1038/nmeth.1984 (2012). | es_ES |
dc.description.references | Churgin, M. A. et al. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife 6, https://doi.org/10.7554/eLife.26652 (2017). | es_ES |
dc.description.references | Aitlhadj, L. & Stürzenbaum, S. R. The use of FUdR can cause prolonged longevity in mutant nematodes. Mech. Ageing Dev. 131, 364–365, https://doi.org/10.1016/j.mad.2010.03.002 (2010). | es_ES |
dc.description.references | Stiernagle, T. Maintenance of C. elegans, https://doi.org/10.1895/wormbook.1.101.1 (2006). | es_ES |
dc.description.references | McGrath, P. T. et al. Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in C. elegans Sensory Behaviors. Neuron 61, 692–699, https://doi.org/10.1016/j.neuron.2009.02.012 (2009). | es_ES |
dc.description.references | Sterken, M. G., Snoek, L. B., Kammenga, J. E. & Andersen, E. C. The laboratory domestication of Caenorhabditis elegans. Trends genetics: TIG 31, 224–231, https://doi.org/10.1016/j.tig.2015.02.009 (2015). | es_ES |
dc.description.references | Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464, https://doi.org/10.1038/366461a0 (1993). | es_ES |
dc.description.references | Dorman, J. B., Albinder, B., Shroyer, T. & Kenyon, C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399–1406 (1995). | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |