- -

Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Puchalt-Rodríguez, Joan Carles es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.contributor.author Ivorra Martínez, Eugenio es_ES
dc.contributor.author Genovés Martínez, Salvador es_ES
dc.contributor.author Martínez, Roberto es_ES
dc.contributor.author Martorell Guerola, Patricia es_ES
dc.date.accessioned 2021-11-05T12:57:30Z
dc.date.available 2021-11-05T12:57:30Z
dc.date.issued 2020-05-26 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176162
dc.description.abstract [EN] Automated lifespan determination for C. elegans cultured in standard Petri dishes is challenging. Problems include occlusions of Petri dish edges, aggregation of worms, and accumulation of dirt (dust spots on lids) during assays, etc. This work presents a protocol for a lifespan assay, with two image-processing pipelines applied to different plate zones, and a new data post-processing method to solve the aforementioned problems. Specifically, certain steps in the culture protocol were taken to alleviate aggregation, occlusions, contamination, and condensation problems. This method is based on an active illumination system and facilitates automated image sequence analysis, does not need human threshold adjustments, and simplifies the techniques required to extract lifespan curves. In addition, two image-processing pipelines, applied to different plate zones, were employed for automated lifespan determination. The first image-processing pipeline was applied to a wall zone and used only pixel level information because worm size or shape features were unavailable in this zone. However, the second image-processing pipeline, applied to the plate centre, fused information at worm and pixel levels. Simple death event detection was used to automatically obtain lifespan curves from the image sequences that were captured once daily throughout the assay. Finally, a new post-processing method was applied to the extracted lifespan curves to filter errors. The experimental results showed that the errors in automated counting of live worms followed the Gaussian distribution with a mean of 2.91% and a standard deviation of +/- 12.73% per Petri plate. Post-processing reduced this error to 0.54 +/- 8.18% per plate. The automated survival curve incurred an error of 4.62 +/- 2.01%, while the post-process method reduced the lifespan curve error to approximately 2.24 +/- 0.55%. es_ES
dc.description.sponsorship This study was also supported by the CDTI agency of the Spanish Ministry of Economy and Competitiveness with CIEN project SMARTFOODS, Universitat PolitAcnica de Valencia with Project 20170020-UPV, Plan Nacional de I + D with Project RTI2018-094312-B-I00 and by European FEDER funds. ADM Nutrition, Biopolis SL and Archer Daniels Midland provided support in the form of salaries for authors P. M. Guerola and S. G. Martinez. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-020-65619-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//20170020-UPV/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-094312-B-I00-AR//MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Puchalt-Rodríguez, JC.; Sánchez Salmerón, AJ.; Ivorra Martínez, E.; Genovés Martínez, S.; Martínez, R.; Martorell Guerola, P. (2020). Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter. Scientific Reports. 10(1):1-14. https://doi.org/10.1038/s41598-020-65619-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-020-65619-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32457411 es_ES
dc.identifier.pmcid PMC7251096 es_ES
dc.relation.pasarela S\413929 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES
dc.description.references Brenner, S. The Genetics Of Caenorhabditis Elegans. Genetics 77, 71–94 (1974). es_ES
dc.description.references Tissenbaum, H. A. & Using, C. Elegans for aging research. Invertebr. Reproduction & Dev. 59, 59–63, https://doi.org/10.1080/07924259.2014.940470 (2015). es_ES
dc.description.references Amrit, F. R. G., Ratnappan, R., Keith, S. A. & Ghazi, A. The C. elegans lifespan assay toolkit. Methods 68, 465–475, https://doi.org/10.1016/j.ymeth.2014.04.002 (2014). es_ES
dc.description.references Guarente, L. & Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 408, 255 (2000). es_ES
dc.description.references Hosono, R. Age dependent changes in the behavior of Caenorhabditis elegans on attraction to Escherichia coli. Exp. Gerontol. 13, 31–36, https://doi.org/10.1016/0531-5565(78)90027-X (1978). es_ES
dc.description.references Hosono, R. Sterilization and growth inhibition of Caenorhabditis elegans by 5-fluorodeoxyuridine. Exp. Gerontol. 13, 369–373, https://doi.org/10.1016/0531-5565(78)90047-5 (1978). es_ES
dc.description.references Kenyon, C. J. The genetics of ageing. Nature 464, 504 (2010). es_ES
dc.description.references Klass, M. R. Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429, https://doi.org/10.1016/0047-6374(77)90043-4 (1977). es_ES
dc.description.references Walker, D. W., McColl, G., Jenkins, N. L., Harris, J. & Lithgow, G. J. Evolution of lifespan in C. elegans. Nature 405, 296–297, https://doi.org/10.1038/35012693 (2000). es_ES
dc.description.references Hertweck, M. & Baumeister, R. Automated assays to study longevity in C. elegans. In Mechanisms of Ageing and Development 126, 139–145, https://doi.org/10.1016/j.mad.2004.09.010 (2005). es_ES
dc.description.references Puckering, T. et al. Automated Wormscan. F1000Research 6, 192, https://doi.org/10.12688/f1000research.10767.2 (2017). es_ES
dc.description.references Stroustrup, N. et al. The Caenorhabditis elegans Lifespan Machine. Nat. methods 10, 665–70, https://doi.org/10.1038/nmeth.2475 NIHMS150003 (2013). es_ES
dc.description.references Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592–U112, https://doi.org/10.1038/nmeth.1625 (2011). es_ES
dc.description.references Puchalt, J. C., Sánchez-Salmerón, A.-J., Martorell Guerola, P. & Genovés Martínez, S. Active backlight for automating visual monitoring: An analysis of a lighting control technique for Caenorhabditis elegans cultured on standard Petri plates. Plos One 14, e0215548 (2019). es_ES
dc.description.references Chen, W. et al. Segmenting Microscopy Images of Multi-Well Plates Based on Image Contrast. Microsc. Microanal. 23, 932–937, https://doi.org/10.1017/S1431927617012375 (2017). es_ES
dc.description.references Cronin, C. J. et al. An automated system for measuring parameters of nematode sinusoidal movement. BMC GENETICS 6, https://doi.org/10.1186/1471-2156-6-5 (2005). es_ES
dc.description.references Fontaine, E., Burdick, J. & Barr, A. Automated Tracking of Multiple C. Elegans. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 3716–3719, https://doi.org/10.1109/IEMBS.2006.260657 (2006). es_ES
dc.description.references Geng, W., Cosman, P., Baek, J.-H., Berry, C. C. & Schafer, W. R. Quantitative Classification and Natural Clustering of Caenorhabditis elegans Behavioral Phenotypes. Genetics 165, 1117 LP–1126 (2003). es_ES
dc.description.references Geng, W., Cosman, P., Berry, C. C., Feng, Z. & Schafer, W. R. Automatic tracking, feature extraction and classification of C. elegans phenotypes. IEEE Transactions on Biomed. Eng. 51, 1811–1820, https://doi.org/10.1109/TBME.2004.831532 (2004). es_ES
dc.description.references Jung, S. K., Aleman-Meza, B., Riepe, C. & Zhong,W. QuantWorm: A comprehensive software package for Caenorhabditis elegans phenotypic assays. Plos One 9, https://doi.org/10.1371/journal.pone.0084830 (2014). es_ES
dc.description.references Kainmueller, D., Jug, F., Rother, C. & Myers, G. Active Graph Matching for Automatic Joint Segmentation and Annotation of C. elegans BT - Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. 81–88 (Springer International Publishing, Cham, 2014). es_ES
dc.description.references Mathew, M. D., Mathew, N. D. & Ebert, P. R. WormScan: A Technique for High-Throughput Phenotypic Analysis of Caenorhabditis elegans. Plos One 7, https://doi.org/10.1371/journal.pone.0033483 (2012). es_ES
dc.description.references Raviv, T. R. et al. Morphology-Guided Graph Search for Untangling Objects: C. elegans Analysis BT - Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. 634–641 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010). es_ES
dc.description.references Restif, C. et al. CeleST: Computer Vision Software for Quantitative Analysis of C. elegans Swim Behavior Reveals Novel Features of Locomotion. Plos Comput. Biol. 10, https://doi.org/10.1371/journal.pcbi.1003702 (2014). es_ES
dc.description.references Roussel, N., Morton, C. A., Finger, F. P. & Roysam, B. A Computational Model for C. elegans Locomotory Behavior: Application to Multiworm Tracking. IEEE Transactions on Biomed. Eng. 54, 1786–1797, https://doi.org/10.1109/TBME.2007. 894981 (2007). es_ES
dc.description.references Tsechpenakis, G., Bianchi, L., Metaxas, D. N. & Driscoll, M. A novel computational approach for simultaneous tracking and feature extraction of C. elegans populations in fluid environments. IEEE Transactions on Biomed. Eng. 55, 1539–1549, https://doi.org/10.1109/TBME.2008.918582 (2008). es_ES
dc.description.references Wählby, C. et al. An image analysis toolbox for high-throughput C. elegans assays. Nat. methods 9, 714–6, https://doi.org/10.1038/nmeth.1984 (2012). es_ES
dc.description.references Churgin, M. A. et al. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife 6, https://doi.org/10.7554/eLife.26652 (2017). es_ES
dc.description.references Aitlhadj, L. & Stürzenbaum, S. R. The use of FUdR can cause prolonged longevity in mutant nematodes. Mech. Ageing Dev. 131, 364–365, https://doi.org/10.1016/j.mad.2010.03.002 (2010). es_ES
dc.description.references Stiernagle, T. Maintenance of C. elegans, https://doi.org/10.1895/wormbook.1.101.1 (2006). es_ES
dc.description.references McGrath, P. T. et al. Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in C. elegans Sensory Behaviors. Neuron 61, 692–699, https://doi.org/10.1016/j.neuron.2009.02.012 (2009). es_ES
dc.description.references Sterken, M. G., Snoek, L. B., Kammenga, J. E. & Andersen, E. C. The laboratory domestication of Caenorhabditis elegans. Trends genetics: TIG 31, 224–231, https://doi.org/10.1016/j.tig.2015.02.009 (2015). es_ES
dc.description.references Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464, https://doi.org/10.1038/366461a0 (1993). es_ES
dc.description.references Dorman, J. B., Albinder, B., Shroyer, T. & Kenyon, C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399–1406 (1995). es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem