- -

Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cáceres, Marta es_ES
dc.contributor.author Quesada, Rita es_ES
dc.contributor.author Iglesias, Mar es_ES
dc.contributor.author Real, Francisco X. es_ES
dc.contributor.author Villamonte, Maria es_ES
dc.contributor.author Martinez de Villarreal, Jaime es_ES
dc.contributor.author Pérez, Mónica es_ES
dc.contributor.author Andaluz, Ana es_ES
dc.contributor.author Moll, Xavier es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.contributor.author Dorcaratto, Dimitri es_ES
dc.contributor.author Sánchez Velazquez, Patricia es_ES
dc.contributor.author Grande, Luis es_ES
dc.contributor.author Burdío, Fernando es_ES
dc.date.accessioned 2021-11-05T12:57:36Z
dc.date.available 2021-11-05T12:57:36Z
dc.date.issued 2020-10-27 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176168
dc.description.abstract [EN] Pancreatic duct ligation (PDL) in the murine model has been described as an exocrine pancreatic atrophy-inducing procedure. However, its influence has scarcely been described on premalignant lesions. This study describes the histological changes of premalignant lesions and the gene expression in a well-defined model of pancreatic ductal adenocarcinoma by PDL. Selective ligation of the splenic lobe of the pancreas was performed in Ptf1a-Cre((+/ki)); K-ras LSLG12Vgeo((+/ki)) mice (PDL-Kras mice). Three experimental groups were evaluated: PDL group, controls and shams. The presence and number of premalignant lesions (PanIN 1-3 and Atypical Flat Lesions-AFL) in proximal (PP) and distal (DP) pancreas were studied for each group over time. Microarray analysis was performed to find differentially expressed genes (DEG) between PP and PD. Clinical human specimens after pancreaticoduodenectomy with ductal occlusion were also evaluated. PDL-Kras mice showed an intense pattern of atrophy in DP which was shrunk to a minimal portion of tissue. Mice in control and sham groups had a 7 and 10-time increase respectively of risk of high-grade PanIN 2 and 3 and AFL in their DP than PDL-Kras mice. Furthermore, PDL-Kras mice had significantly less PanIN 1 and 2 and AFL lesions in DP compared to PP. We identified 38 DEGs comparing PP and PD. Among them, several mapped to protein secretion and digestion while others such as Nupr1 have been previously associated with PanIN and PDAC. PDL in Ptf1a-Cre((+/ki)); K-ras LSLG12Vgeo((+/ki)) mice induces a decrease in the presence of premalignant lesions in the ligated DP. This could be a potential line of research of interest in some cancerous risk patients. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad under "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad", Grant No "RTI2018-094357-B-C22". es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-020-74947-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-094357-B-C22//INVESTIGACION QUIRURGICA PARA TERAPIAS ABLATIVAS INNOVADORAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Cáceres, M.; Quesada, R.; Iglesias, M.; Real, FX.; Villamonte, M.; Martinez De Villarreal, J.; Pérez, M.... (2020). Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice. Scientific Reports. 10(1):1-12. https://doi.org/10.1038/s41598-020-74947-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-020-74947-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33110094 es_ES
dc.identifier.pmcid PMC7591874 es_ES
dc.relation.pasarela S\420466 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Mattiuzzi, C. & Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health 9, 217–222 (2019). es_ES
dc.description.references Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 74, 2913–2921 (2014). es_ES
dc.description.references Han, H. & Von Hoff, D. D. SnapShot: Pancreatic cancer. Cancer Cell 23, 424-424.e1 (2013). es_ES
dc.description.references Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003). es_ES
dc.description.references Shen, R. et al. The biological features of PanIN initiated from oncogenic Kras mutation in genetically engineered mouse models. Cancer Lett. 339, 135–143 (2013). es_ES
dc.description.references Aichler, M. et al. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: A comparative study in transgenic mice and human tissues. J. Pathol. 226, 723–734 (2012). es_ES
dc.description.references Esposito, I., Konukiewitz, B., Schlitter, A. M. & Klöppel, G. New insights into the origin of pancreatic cancer. Role of atypical flat lesions in pancreatic carcinogenesis. Pathologe 33, 189–193 (2012). es_ES
dc.description.references Esposito, I., Konukiewitz, B., Schlitter, A. M. & Klöppel, G. Pathology of pancreatic ductal adenocarcinoma: Facts, challenges and future developments. World J. Gastroenterol. 20, 13833–13841 (2014). es_ES
dc.description.references Löhr, M., Klöppel, G., Maisonneuve, P., Lowenfels, A. B. & Lüttges, J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: A meta-analysis. Neoplasia 7, 17–23 (2005). es_ES
dc.description.references Almoguera, C. et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53, 549–554 (1988). es_ES
dc.description.references Wilentz, R. E., Argani, P. & Hruban, R. H. Loss of heterozygosity or intragenic mutation, which comes first?. Am. J. Pathol. 158, 1561–1563 (2001). es_ES
dc.description.references Schmitt, E., Paquet, C., Beauchemin, M. & Bertrand, R. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J. Zhejiang Univ. Sci. B 8, 377–397 (2007). es_ES
dc.description.references Schuler, M., Bossy-wetzel, E., Goldstein, J. C., Fitzgerald, P. & Green, D. R. P53 induces apoptosis by caspase activation through mitochondrial cytochrome C release. J. Biol. Chem. 275, 7337–7342 (2000). es_ES
dc.description.references Brune, K. et al. Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am. J. Surg. Pathol. 30, 1067–1076 (2006). es_ES
dc.description.references Maitra, A. et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod. Pathol. 16, 902–912 (2003). es_ES
dc.description.references Wada, M., Doi, R., Hosotani, R., Lee, J. U. & Imamura, M. Apoptosis of acinar cells in rat pancreatic duct ligation. J. Gastroenterol. 30, 813–814 (1995). es_ES
dc.description.references Walker, N. I. Ultrastructure of the rat pancreas after experimental duct ligation. I. The role of apoptosis and intraepithelial macrophages in acinar cell deletion. Am. J. Pathol. 126, 439–451 (1987). es_ES
dc.description.references Scoggins, C. R. et al. p53-Dependent acinar cell apoptosis triggers epithelial proliferation in duct-ligated murine pancreas. Am. J. Physiol. Gastrointest. Liver Physiol. 270, 827–836 (2000). es_ES
dc.description.references Watanabe, S., Abe, K., Anbo, Y. & Katoh, H. Changes in the mouse exocrine pancreas after pancreatic duct ligation: A qualitative and quantitative histological study. Arch. Histol. Cytol. 58, 365–374 (1995). es_ES
dc.description.references Quesada, R. et al. Radiofrequency pancreatic ablation and section of the main pancreatic duct does not lead to necrotizing pancreatitis. Pancreas 43, 1–7 (2014). es_ES
dc.description.references Quesada, R. et al. Long-term evolution of acinar-to-ductal metaplasia and β-cell mass after radiofrequency-assisted transection of the pancreas in a controlled large animal model. Pancreatology 16, 1–6 (2015). es_ES
dc.description.references Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003). es_ES
dc.description.references Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell https://doi.org/10.1016/j.ccr.2007.01.012 (2007). es_ES
dc.description.references De Groef, S. et al. Surgical injury to the mouse pancreas through ligation of the pancreatic duct as a model for endocrine and exocrine reprogramming and proliferation. J. Vis. Exp. https://doi.org/10.3791/52765 (2015). es_ES
dc.description.references Hruban, R. H. et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: Consensus report and recommendations. Cancer Res. 66, 95–106 (2006). es_ES
dc.description.references Hruban, R. H., Maitra, A. & Goggins, M. Update on pancreatic intraepithelial neoplasia. Int. J. Clin. Exp. Pathol. 1, 306–316 (2008). es_ES
dc.description.references Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Select. Works Terry Speed 4, 601–616 (2012). es_ES
dc.description.references Kauffmann, A., Gentleman, R. & Huber, W. arrayQualityMetrics—A bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009). es_ES
dc.description.references Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010). es_ES
dc.description.references James W. MacDonald. Affycoretools: Functions useful for those doing repetitive analyses with Affymetrix GeneChips. R package version 1.56.0. (2010). es_ES
dc.description.references Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). es_ES
dc.description.references Fromm, D. & Schwarz, K. Ligation of the pancreatic duct during difficult operative circumstances. J. Am. Coll. Surg. 197, 943–948 (2003). es_ES
dc.description.references Sato, N. et al. Long-term morphological changes of remnant pancreas and biliary tree after pancreatoduodenectomy on CT. Int. Surg. 83, 136–140 (1998). es_ES
dc.description.references Tomimaru, Y. et al. Comparison of postoperative morphological changes in remnant pancreas between pancreaticojejunostomy and pancreaticogastrostomy after pancreaticoduodenectomy. Pancreas 38, 203–207 (2009). es_ES
dc.description.references Burdío, F. et al. Radiofrequency-induced heating versus mechanical stapler for pancreatic stump closure: In vivo comparative study. Int. J. Hyperth. 32, 2 (2016). es_ES
dc.description.references Nusse, R. Molecular biology of cancer genes. Trends Genet. 7, 103 (2003). es_ES
dc.description.references Bhatia, M. Apoptosis of pancreatic acinar cells in acute pancreatitis: Is it good or bad?. J. Cell Mol. Med. 8, 402–409 (2004). es_ES
dc.description.references Chu, L. C., Goggins, M. G. & Fishman, E. K. Diagnosis and detection of pancreatic cancer. Cancer J. 23, 333–342 (2020). es_ES
dc.description.references Takahashi, S. et al. Apoptosis and mitosis of parenchymal cells in the duct-ligated rat submandibular gland. Tissue Cell 32, 457–463 (2000). es_ES
dc.description.references Shi, C. et al. Differential cell susceptibilities to Kras in the setting of obstructive chronic pancreatitis. Cell. Mol. Gastroenterol. Hepatol. https://doi.org/10.1016/j.jcmgh.2019.07.001 (2019). es_ES
dc.description.references Cheng, T. et al. Ductal obstruction promotes formation of preneoplastic lesions from the pancreatic ductal compartment. Int. J. Cancer 144, 2529–2538 (2019). es_ES
dc.description.references Makawita, S. et al. Validation of four candidate pancreatic cancer serological biomarkers that improve the performance of CA19.9. BMC Cancer https://doi.org/10.1186/1471-2407-13-404 (2013). es_ES
dc.description.references Cheung, W. et al. Application of a global proteomic approach to archival precursor lesions: Deleted in malignant brain tumors 1 and tissue transglutaminase 2 are upregulated in pancreatic cancer precursors. Pancreatology 8, 608–616 (2008). es_ES
dc.description.references Kontos, C. K., Mavridis, K., Talieri, M. & Scorilas, A. Kallikrein-related peptidases (KLKs) in gastrointestinal cancer: Mechanistic and clinical aspects. Thromb. Haemost. 110, 450–457 (2013). es_ES
dc.description.references Hamidi, T. et al. Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. J. Clin. Invest 122, 2092–3103 (2012). es_ES
dc.description.references Cano, C. E. et al. Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis. Gut 63, 984–995 (2014). es_ES
dc.description.references Grasso, D. et al. Genetic inactivation of the pancreatitis-inducible gene Nupr1 impairs PanIN formation by modulating KrasG12D-induced senescence. Cell Death Differ. https://doi.org/10.1038/cdd.2014.74 (2014). es_ES
dc.description.references Basturk, O. et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am. J. Surg. Pathol. 39, 1730–1741 (2015). es_ES
dc.description.references Guerra, C. & Barbacid, M. Genetically engineered mouse models of pancreatic adenocarcinoma. Mol. Oncol. 7, 232–247 (2013). es_ES
dc.description.references Sharma, S. & Green, K. B. The pancreatic duct and its arteriovenous relationship. Am. J. Surg. Pathol. 28, 613–620 (2004). es_ES
dc.description.references Pérez-Mancera, P. A., Guerra, C., Barbacid, M. & Tuveson, D. A. What we have learned about pancreatic cancer from mouse models. Gastroenterology 142, 1079–1092 (2012). es_ES
dc.description.references von Figura, G., Morris, J. P., Wright, C. V. E. & Hebrok, M. Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation. Gut 63, 656–664 (2014). es_ES
dc.description.references Andaluz, A. et al. Endoluminal radiofrequency ablation of the main pancreatic duct is a secure and effective method to produce pancreatic atrophy and to achieve stump closure. Sci. Rep. https://doi.org/10.1038/s41598-019-42411-7 (2019). es_ES
dc.description.references Wood, L. D., Yurgelun, M. B. & Goggins, M. G. Genetics of familial and sporadic pancreatic cancer. Gastroenterology 156, 2041–2055 (2019). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem