- -

Fluctuations in measured radioactive decay rates inside a modified Faraday cage: Correlations with space weather

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fluctuations in measured radioactive decay rates inside a modified Faraday cage: Correlations with space weather

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Milián-Sánchez, V. es_ES
dc.contributor.author Scholkmann, F. es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Mocholí Salcedo, Antonio es_ES
dc.contributor.author Mocholí-Belenguer, Ferran es_ES
dc.contributor.author Iglesias-Martínez, M. E. es_ES
dc.contributor.author Castro-Palacio, Juan Carlos es_ES
dc.contributor.author Kolombet, V. A. es_ES
dc.contributor.author Panchelyuga, V. A. es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-11-05T12:57:37Z
dc.date.available 2021-11-05T12:57:37Z
dc.date.issued 2020-05-22 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176169
dc.description.abstract [EN] For several years, reports have been published about fluctuations in measured radioactive decay time-series and in some instances linked to astrophysical as well as classical environmental influences. Anomalous behaviors of radioactive decay measurement and measurement of capacitance inside and outside a modified Faraday cage were documented by our group in previous work. In the present report, we present an in-depth analysis of our measurement with regard to possible correlations with space weather, i.e. the geomagnetic activity (GMA) and cosmic-ray activity (CRA). Our analysis revealed that the decay and capacitance time-series are statistically significantly correlated with GMA and CRA when specific conditions are met. The conditions are explained in detail and an outlook is given on how to further investigate this important finding. Our discovery is relevant for all researchers investigating radioactive decay measurements since they point out that the space weather condition during the measurement is relevant for partially explaining the observed variability. es_ES
dc.description.sponsorship This work has been partially financed by: grant no. 20170764 (Equipos de deteccion, regulacion e informacion en el sector de los sistemas inteligentes de transporte (ITS). Nuevos modelos y ensayos de compatibilidad y verificacion de funcionamiento) (Spain), by grant no. RTI2018-102256-B-I00 (Spain), by the Generalitat Valenciana (Spain) under project Bioingenieria de las Radiaciones Ionizantes. Biorad (PROMETEO/2018/035) and the project MEMO RADION (IDIFEDER/2018/038) co-financed by the Programa Operativo del Fondo Social Europeo 2014-2020", and by grant No.075-00845-20-01 (Russia). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Decay rates variability es_ES
dc.subject Capacitance variability es_ES
dc.subject Space weather es_ES
dc.subject Nuclear physics es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Fluctuations in measured radioactive decay rates inside a modified Faraday cage: Correlations with space weather es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-020-64497-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Science and Higher Education of the Russian Federation//075-00845-20-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universitat Politècnica de València//20170764//Equipos de Detección, Regulación e Información en el sector de los Sistemas Inteligentes de Transporte (ITS). Nuevos Modelos y Ensayos de Compatibilidad y Verificación de Funcionamiento/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F038//LABORATORIO MOVIL DE ANALISIS DE RADIACIONES IONIZANTES (LABRADIO)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F035//BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-102256-B-I00-AR//TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Milián-Sánchez, V.; Scholkmann, F.; Fernández De Córdoba, P.; Mocholí Salcedo, A.; Mocholí-Belenguer, F.; Iglesias-Martínez, ME.; Castro-Palacio, JC.... (2020). Fluctuations in measured radioactive decay rates inside a modified Faraday cage: Correlations with space weather. Scientific Reports. 10(1):1-12. https://doi.org/10.1038/s41598-020-64497-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-020-64497-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32444614 es_ES
dc.identifier.pmcid PMC7244597 es_ES
dc.relation.pasarela S\407649 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministry of Science and Higher Education of the Russian Federation es_ES
dc.description.references Milián-Sánchez, V., Mocholí-Salcedo, A., Milián, C., Kolombet, V. A. & Verdú, G. Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 210–228 (2016). es_ES
dc.description.references G. F. Knoll Radiation Detection and Measurement, 4th Edition. (Wiley, 2010). es_ES
dc.description.references Jenkins, J. H., Mundy, D. W. & Fischbach, E. Analysis of environmental influences in nuclear half-life measurements exhibiting time-dependent decay rates. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 620, 332–342 (2010). es_ES
dc.description.references Jenkins, J. H. et al. Additional experimental evidence for a solar influence on nuclear decay rates. Astroparticle Physics 37, 81–88 (2012). es_ES
dc.description.references Falkenberg, E. D. Radioactive Decay Caused by Neutrinos? Apeiron 8, 32–45 (2001). es_ES
dc.description.references A. G. Parkhomov Influence of Relic Neutrinos on Beta Radioactivity. arXiv:1010.1591v1 [physics.gen-ph], (2010). es_ES
dc.description.references P. A. Sturrock, E. Fischbach, A. G. Parkhamov, J. D. Scargle, G. Steinitz, Concerning the variability of beta-decay measurements. arXiv:1510.05996 [nucl-ex], (2015). es_ES
dc.description.references Baurov, Y. A. et al. Experimental Investigations of Changes in β-Decay if 60Co and 137Cs. Modern Physics Letters A 16, 2089–2101 (2001). es_ES
dc.description.references Baurov, Y. A. Research of Global Anisotropy of Physical Space on Investigation Base of Changes in β and α-decay Rate of Radioactive Elements. Motion of Pulsars and Anisotropy of Cosmic Rays. American Journal of Modern Physics 2, 177–184 (2013). es_ES
dc.description.references Baurov, Y. A., Sobolev, Y. G., Ryabov, Y. V. & Kushniruk, V. F. Experimental investigations of changes in the rate of beta decay of radioactive elements. Physics of Atomic Nuclei 70, 1825–1835 (2009). es_ES
dc.description.references Baurov, Y. A. The anisotropic phenomenon in the β decay of radioactive elements and in other processes in nature. Bulletin of the Russian Academy of Sciences: Physics 76, 1076–1080 (2012). es_ES
dc.description.references Baurov, Y. A., Sobolev, Y. G. & Ryabov, Y. V. New force, global anisotropy and the changes in β-decay rate of radioactive elements. American Journal of Astronomy and Astrophysics 2, 8–19 (2014). es_ES
dc.description.references Pons, D. J., Pons, A. D. & Pons, A. J. Asymmetrical neutrino induced decay of nucleons. Applied Physics Research 7, 1–13 (2015). es_ES
dc.description.references Pons, D. J., Pons, A. D. & Pons, A. J. Hidden Variable Theory Supports Variability in Decay Rates of Nuclides. Applied Physics Research 7, 18–29 (2015). es_ES
dc.description.references Kossert, K. & Nähle, O. J. Long-term measurements of 36Cl to investigate potential solar influence on the decay rate. Astroparticle Physics 55, 33–36 (2014). es_ES
dc.description.references Schrader, H. Seasonal variations of decay rate measurement data and their interpretation. Applied Radiation and Isotopes 114, 202–213 (2016). es_ES
dc.description.references Pommé, S. et al. Evidence against solar influence on nuclear decay constants. Physics Letters B 761, 281–286 (2016). es_ES
dc.description.references Bergeson, S. D., Peatross, J. & Ware, M. J. Precision long-term measurements of beta-decay-rate ratios in a controlled environment. Physics Letters B 767, 171–176 (2017). es_ES
dc.description.references McKnight, Q., Bergeson, S. D., Peatross, J. & Ware, M. J. 2.7 years of beta-decay-rate ratio measurements in a controlled environment. Applied Radiation and Isotopes 142, 113–119 (2018). es_ES
dc.description.references Pommé, S. et al. On decay constants and orbital distance to the Sun—part I: alpha decay. Metrologia 54, 1–18 (2017). es_ES
dc.description.references Pommé, S. et al. On decay constants and orbital distance to the Sun—part III: beta plus and electron capture decay. Metrologia 54, 36–50 (2017). es_ES
dc.description.references Pommé, S., Lutter, G., Marouli, M., Kossert, K. & Nähle, O. On the claim of modulations in radon decay and their association with solar rotation. Astroparticle Physics 97, 38–45 (2018). es_ES
dc.description.references S. Pommé, K. Kossert, O. Nähle On the Claim of Modulations in 36Cl Beta Decay and Their Association with Solar Rotation. Solar Physics 292 (2017). es_ES
dc.description.references Pommé, S. et al. Is decay constant? Applied Radiation and Isotopes 134, 6–12 (2018). es_ES
dc.description.references Bellotti, E., Broggini, C., Di Carlo, G., Laubenstein, M. & Menegazzo, R. Search for time modulations in the decay constant of 40 K and 226 Ra at the underground Gran Sasso Laboratory. Physics Letters B 780, 61–65 (2018). es_ES
dc.description.references Borrello, J. A., Wuosmaa, A. & Watts, M. Non-dependence of nuclear decay rates of 123 I and 99m Tc on Earth-Sun distance. Applied Radiation and Isotopes 132, 189–194 (2018). es_ES
dc.description.references Sturrock, P. A., Steinitz, G., Fischbach, E., Parkhomov, A. & Scargle, J. D. Analysis of beta-decay data acquired at the Physikalisch-Technische Bundesanstalt: Evidence of a solar influence. Astroparticle Physics 84, 8–14 (2016). es_ES
dc.description.references Stancil, D. D., Balci Yegen, S., Dickey, D. A. & Gould, C. R. Search for possible solar influences in Ra-226 decays. Results in Physics 7, 385–406 (2017). es_ES
dc.description.references P. A. Sturrock, G. Steinitz & E. Fischbach Analysis of Ten Years of Radon-Chain Decay Measurements: Evidence of Solar Influences and Inferences Concerning Solar Internal Structure and the Role of Neutrinos. arXiv:1705.03010 [astro-ph.SR], (2017). es_ES
dc.description.references Sturrock, P. A., Steinitz, G. & Fischbach, E. Concerning the variability of nuclear decay rates: Rebuttal of an article by Pomme et al. [1]. Astroparticle Physics 98, 9–12 (2018). es_ES
dc.description.references Pommé, S., Lutter, G., Marouli, M., Kossert, K. & Nähle, O. A reply to the rebuttal by Sturrock et al. Astroparticle Physics 107, 22–25 (2019). es_ES
dc.description.references S. Pommé, Solar influence on radon decay rates: irradiance or neutrinos? The European Physical Journal C. 79 (2019). es_ES
dc.description.references Barnes, V. E. et al. Upper limits on perturbations of nuclear decay rates induced by reactor electron antineutrinos. Applied Radiation and Isotopes 149, 182–199 (2019). es_ES
dc.description.references Pommé, S., Stroh, H. & Van Ammel, R. The 55Fe half-life measured with a pressurised proportional counter. Applied Radiation and Isotopes 148, 27–34 (2019). es_ES
dc.description.references Elmaghraby, E. E. Configuration Mixing in Particle Decay and Reaction. Progress in Physics 13, 150–155 (2017). es_ES
dc.description.references Shnoll, S. E. et al. Realization of discrete states during fluctuations in macroscopic processes. Physics-Uspekhi 41, 1025–1035 (1998). es_ES
dc.description.references Namiot, V. A. & Shnoll, S. E. On the possible mechanism of periodicity in fine structure of histograms during nuclear decay processes. Physics Letters A 359, 249–251 (2006). es_ES
dc.description.references Panchelyuga, V. A. & Panchelyuga, M. S. Fractal dimension and histogram method: Algorithm and some preliminary results of noise-like time series analysis. Biophysics 58, 283–289 (2013). es_ES
dc.description.references Panchelyuga, V. A. & Panchelyuga, M. S. Local fractal analysis of noise-like time series by the all-permutations method for 1–115 min periods. Complex Systems Biophysics 60, 317–330 (2015). es_ES
dc.description.references T. A. Zenchenko, A. A. Konradov, K. I. Zenchenko In Biophotonics and Coherent Systems in Biology. chap. Chapter 18, pp. 225–233 (2005). es_ES
dc.description.references Jenkins, J. H. & Fischbach, E. Perturbation of nuclear decay rates during the solar flare of 2006 December 13. Astroparticle Physics 31, 407–411 (2009). es_ES
dc.description.references F. Scholkmann et al., Anomalous effects of radioactive decay rates and capacitance values measured inside a modified Faraday cage: Correlations with space weather. EPL (Europhysics Letters) 117 (2017). es_ES
dc.description.references M. E. Iglesias-Martínez et al. Correlations between Background Radiation Inside a Multilayer Interleaving Structure, Geomagnetic Activity, and Cosmic Radiation: A Fourth-Order Cumulant-Based Correlation Analysis. Mathematics 8 (2020). es_ES
dc.description.references Karinen, A. & Mursula, K. A new reconstruction of the Dst index for 1932-2002. Annales Geophysicae 23, 475–485 (2005). es_ES
dc.description.references A. Karinen, K. Mursula Correcting the Dst index: Consequences for absolute level and correlations. Journal of Geophysical Research 111 (2006). es_ES
dc.description.references Nakamura, T., Uwamino, Y., Ohkubo, T. & Hara, A. Altitude Variation of Cosmic-ray Neutrons. Health Physics 53, 509–517 (1987). es_ES
dc.description.references Hendrick, L. D. & Edge, R. D. Cosmic-Ray Neutrons near the Earth. Physical Review 145, 1023–1025 (1966). es_ES
dc.description.references Yamashita, M., Stephens, L. D. & Patterson, H. W. Cosmic-ray-produced neutrons at ground level: Neutron production rate and flux distribution. Journal of Geophysical Research 71, 3817–3834 (1966). es_ES
dc.description.references Mohsinally, T. et al. Evidence for correlations between fluctuations in 54Mn decay rates and solar storms. Astroparticle Physics 75, 29–37 (2016). es_ES
dc.description.references Snyder, C. W., Neugebauer, M. & Rao, U. R. The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. Journal of Geophysical Research 68, 6361–6370 (1963). es_ES
dc.description.references Kharayat, H., Prasad, L., Mathpal, R., Garia, S. & Bhatt, B. Study of Cosmic Ray Intensity in Relation to the Interplanetary Magnetic Field and Geomagnetic Storms for Solar Cycle 23. Solar Physics 291, 603–611 (2016). es_ES
dc.description.references M. Tsichla, M. Gerontidou, H. Mavromichalaki, Spectral Analysis of Solar and Geomagnetic Parameters in Relation to Cosmic-ray Intensity for the Time Period 1965 – 2018. Solar Physics 294 (2019). es_ES
dc.description.references Singh, Y. P. Badruddin, Short- and mid-term oscillations of solar, geomagnetic activity and cosmic-ray intensity during the last two solar magnetic cycles. Planetary and Space Science 138, 1–6 (2017). es_ES
dc.description.references B. Adhikari, N. Sapkota, P. Baruwal, N. P. Chapagain & C. R. Braga Impacts on Cosmic-Ray Intensity Observed During Geomagnetic Disturbances. Solar Physics 292 (2017). es_ES
dc.description.references Grigoryev, V. G., Starodubtsev, S. A. & Gololobov, P. Y. Monitoring geomagnetic disturbance predictors using data of ground measurements of cosmic rays. Bulletin of the Russian Academy of Sciences: Physics 81, 200–202 (2017). es_ES
dc.description.references W. Reich Selected Writings: An Introduction to Orgonomy. (Farrar, Straus and Cudahy, 1960). es_ES
dc.description.references Fischbach, E. et al. Time-Dependent Nuclear Decay Parameters: New Evidence for New Forces? Space Science Reviews 145, 285–335 (2009). es_ES
dc.description.references Javorsek, D. et al. Power spectrum analyses of nuclear decay rates. Astroparticle Physics 34, 173–178 (2010). es_ES
dc.description.references Bellotti, E., Broggini, C., Di Carlo, G., Laubenstein, M. & Menegazzo, R. Search for time dependence of the 137Cs decay constant. Physics Letters B 710, 114–117 (2012). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem