- -

A Parallel Structured Divide-and-Conquer Algorithm for Symmetric Tridiagonal Eigenvalue Problems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Parallel Structured Divide-and-Conquer Algorithm for Symmetric Tridiagonal Eigenvalue Problems

Show full item record

Liao, X.; Li, S.; Lu, Y.; Román Moltó, JE. (2021). A Parallel Structured Divide-and-Conquer Algorithm for Symmetric Tridiagonal Eigenvalue Problems. IEEE Transactions on Parallel and Distributed Systems. 32(2):367-378. https://doi.org/10.1109/TPDS.2020.3019471

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176234

Files in this item

Item Metadata

Title: A Parallel Structured Divide-and-Conquer Algorithm for Symmetric Tridiagonal Eigenvalue Problems
Author: Liao, Xia Li, Shengguo Lu, Yutong Román Moltó, José Enrique
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] In this article, a parallel structured divide-and-conquer (PSDC) eigensolver is proposed for symmetric tridiagonal matrices based on ScaLAPACK and a parallel structured matrix multiplication algorithm, called PSMMA. ...[+]
Subjects: Approximation algorithms , Symmetric matrices , Generators , Eigenvalues and eigenfunctions , Matrix decomposition , Complexity theory , Scalability , PSMMA , PUMMA algorithm , ScaLAPACK , Divide-and-conquer , Rank-structured matrix , Cauchy-like matrix
Copyrigths: Reserva de todos los derechos
Source:
IEEE Transactions on Parallel and Distributed Systems. (issn: 1045-9219 )
DOI: 10.1109/TPDS.2020.3019471
Publisher:
Institute of Electrical and Electronics Engineers
Publisher version: https://doi.org/10.1109/TPDS.2020.3019471
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/
info:eu-repo/grantAgreement/NSFC//NNW2019ZT6-B20/
info:eu-repo/grantAgreement/NSFC//NNW2019ZT6B21/
info:eu-repo/grantAgreement/NSFC//NNW2019ZT5-A10/
info:eu-repo/grantAgreement/NSFC//U1611261/
info:eu-repo/grantAgreement/NSFC//61872392/
info:eu-repo/grantAgreement/NSFC//U1811461/
info:eu-repo/grantAgreement/National Key Research and Development Program, China//2018YFB0204303/
info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2018B030312002/
info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2016ZT06D211/
info:eu-repo/grantAgreement/Natural Science Foundation of Hunan Province//2019JJ40339/
info:eu-repo/grantAgreement/NUDT//ZK18-03-01/
[-]
Description: © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Thanks:
The authors would like to thank the referees for their valuable comments which greatly improve the presentation of this article. This work was supported by National Natural Science Foundation of China (No. NNW2019ZT6-B20, ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record