- -

Localization of charging stations for electric vehicles using genetic algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Localization of charging stations for electric vehicles using genetic algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jordán, Jaume es_ES
dc.contributor.author Palanca Cámara, Javier es_ES
dc.contributor.author Del Val Noguera, Elena es_ES
dc.contributor.author Julian Inglada, Vicente Javier es_ES
dc.contributor.author Botti, V. es_ES
dc.date.accessioned 2021-11-05T14:06:29Z
dc.date.available 2021-11-05T14:06:29Z
dc.date.issued 2021-09-10 es_ES
dc.identifier.issn 0925-2312 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176241
dc.description.abstract [EN] The electric vehicle (EV) is gradually being introduced in cities. The impact of this introduction is less due, among other reasons, to the lack of charging infrastructure necessary to satisfy the demand. In today¿s cities there is no adequate infrastructure and it is necessary to have action plans that allow an easy deployment of a network of EV charging points in current cities. These action plans should try to place the EV charging stations in the most appropriate places for optimizing their use. According to this, this paper presents an agent-oriented approach that analyses the different configurations of possible locations of charging stations for the electric vehicles in a specific city. The proposed multi-agent system takes into account data from a variety of sources such as social networks activity and mobility information in order to estimate the best configurations. The proposed approach employs a genetic algorithm (GA) that tries to optimize the possible configurations of the charging infrastructure. Additionally, a new crossover method for the GA is proposed considering this context. es_ES
dc.description.sponsorship This work was partially supported by MINECO/FEDER RTI2018-095390-B-C31 and MODINVECI project of the Spanish government. Vicent Botti and Jaume Jordan are funded by UPV PAID-06-18 project. Jaume Jordan is funded by grant APOSTD/2018/010 of GVA-FSE es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Neurocomputing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Genetic algorithm es_ES
dc.subject Crossover es_ES
dc.subject Multi-agent system es_ES
dc.subject Charging station es_ES
dc.subject Electric vehicle es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Localization of charging stations for electric vehicles using genetic algorithms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.neucom.2019.11.122 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C31/ES/HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//APOSTD%2F2018%2F010//CONTRATACION DE INVESTIGADOR POSTDOCTORAL GVA-JORDAN PRUNERA. PROYECTO: TECNOLOGIAS INTELIGENTES PARA OPTIMIZACION DE FLOTAS URBANAS DE VEHICULOS ELECTRICOS. / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//SP20180184//Técnicas inteligentes para optimización de la localización de estaciones de recarga de vehículos eléctricos y mejora de la movilidad en ciudades/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Jordán, J.; Palanca Cámara, J.; Del Val Noguera, E.; Julian Inglada, VJ.; Botti, V. (2021). Localization of charging stations for electric vehicles using genetic algorithms. Neurocomputing. 452:416-423. https://doi.org/10.1016/j.neucom.2019.11.122 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.neucom.2019.11.122 es_ES
dc.description.upvformatpinicio 416 es_ES
dc.description.upvformatpfin 423 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 452 es_ES
dc.relation.pasarela S\422604 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem