Araujo SA, Arenales MN, Clark A (2007) Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. J Heuristics 13(4):337–358. https://doi.org/10.1007/s10732-007-9011-9
ASIC (2018) Clúster de cálculo: Rigel. http://www.upv.es/entidades/ASIC/catalogo/857893normalc.html. Accessed date 22 July 2018
Baker KR (1977) An experimental study of the effectiveness of rolling schedules in production planning. Decis Sci 8(1):19–27. https://doi.org/10.1111/j.1540-5915.1977.tb01065.x
[+]
Araujo SA, Arenales MN, Clark A (2007) Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. J Heuristics 13(4):337–358. https://doi.org/10.1007/s10732-007-9011-9
ASIC (2018) Clúster de cálculo: Rigel. http://www.upv.es/entidades/ASIC/catalogo/857893normalc.html. Accessed date 22 July 2018
Baker KR (1977) An experimental study of the effectiveness of rolling schedules in production planning. Decis Sci 8(1):19–27. https://doi.org/10.1111/j.1540-5915.1977.tb01065.x
Barrett RT, LaForge RL (1991) A study of replanning frequencies in a material requirements planning system. Comput Oper Res 18(6):569–578. https://doi.org/10.1016/0305-0548(91)90062-V
Behnamian J, Fatemi Ghomi SMT (2014) A survey of multi-factory scheduling. J Intell Manuf 27:1–19. https://doi.org/10.1007/s10845-014-0890-y
Billington PJ, McClain JO, Thomas LJ (1983) Mathematical programming approaches to capacity-constrained MRP systems: review, formulation and problem reduction. Manag Sci 29(10):1126–1141. https://doi.org/10.1287/mnsc.29.10.1126
Blackburn JD, Millen RA (1980) Heuristic lot-sizing performance in a rolling-schedule environment. Decis Sci 11(4):691–701. https://doi.org/10.1111/j.1540-5915.1980.tb01170.x
Cao Y (2015) Long-distance procurement planning in global sourcing. Ecole Centrale Paris. https://tel.archives-ouvertes.fr/tel-01154871/. Accessed 15 Dec 2017
Carlson RC, Beckman SL, Kropp DH (1982) The effectiveness o extending the horizon in rolling production scheduling. Decis Sci 13(1):129–146. https://doi.org/10.1111/j.1540-5915.1982.tb00136.x
Chand S, Hsu VN, Sethi S (2002) Forecast, solution, and rolling horizons in operations management problems: a classified bibliography. Manuf Serv Oper Manag 4(1):25–43. https://doi.org/10.1287/msom.4.1.25.287
Coronado-Hernández JR (2016) Análisis del efecto de algunos factores de complejidad e incertidumbre en el rendimiento de las Cadenas de Suministro. Propuesta de una herramienta de valoración basada en simulación. Universitat Politècnica de València, Valencia (Spain). https://doi.org/10.4995/Thesis/10251/61467
de Sampaio RJB, Wollmann RRG, Vieira PFG (2017) A flexible production planning for rolling-horizons. Int J Prod Econ 190:31–36. https://doi.org/10.1016/j.ijpe.2017.01.003
DeYong GD, Cattani KD (2016) Fenced in? Stochastic and deterministic planning models in a time-fenced, rolling-horizon scheduling system. Eur J Oper Res 251(1):85–95. https://doi.org/10.1016/j.ejor.2015.11.006
Federgruen A, Tzur M (1994) Minimal forecast horizons and a new planning procedure for the general dynamic lot sizing model: nervousness revisited. Oper Res 42(3):456–468. https://doi.org/10.1287/opre.42.3.456
Fisher ML, Ramdas K, Zheng YS (2001) Ending inventory valuation in multiperiod production scheduling. Manag Sci 47(5):679–692. https://doi.org/10.1287/mnsc.47.5.679.10485
Garcia-Sabater JP, Maheut J, Garcia-Sabater JJ (2009. A capacitated material requirements planning model considering delivery constraints: a case study from the automotive industry. In: 2009 international conference on computers and industrial engineering, IEEE, pp 378–383. https://doi.org/10.1109/ICCIE.2009.5223806
Garcia-Sabater JP, Maheut J, Garcia-Sabater JJ (2012) A two-stage sequential planning scheme for integrated operations planning and scheduling system using MILP: the case of an engine assembler. Flex Serv Manuf J 24(2):171–209. https://doi.org/10.1007/s10696-011-9126-z
Garcia-Sabater JP, Maheut J, Marin-Garcia JA (2013) A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. Eur J Ind Eng 7(2):119. https://doi.org/10.1504/EJIE.2013.052572
Hair JF, Prentice E, Cano D (1999) Análisis multivariante. Prentice-Hall, Upper Saddle River
Hozak K, Hill JA (2009) Issues and opportunities regarding replanning and rescheduling frequencies. Int J Prod Res 47(18):4955–4970. https://doi.org/10.1080/00207540802047106
Hsu CH, Yang HC (2017) Real-time near-optimal scheduling with rolling horizon for automatic manufacturing cell. IEEE Access 5:3369–3375. https://doi.org/10.1109/ACCESS.2016.2616366
Jans R (2009) Solving lot-sizing problems on parallel identical machines using symmetry-breaking constraints. Inf J Comput 21(1):123–136. https://doi.org/10.1287/ijoc.1080.0283
Karimi B, Fatemi Ghomi SMT, Wilson JM (2003) The capacitated lot sizing problem: a review of models and algorithms. Omega 31(5):365–378. https://doi.org/10.1016/S0305-0483(03)00059-8
Kimms A (1997) Multi-level lot sizing and scheduling, vol 53. Physica-Verlag, Heidelberg. https://doi.org/10.1007/978-3-642-50162-3
Kleindorfer P, Kunreuther H (1978) Stochastic horizons for the aggregate planning problem. Manag Sci 24(5):485–497. https://doi.org/10.1287/mnsc.24.5.485
Kumar BK, Nagaraju D, Narayanan S (2016) Supply chain coordination models: a literature review. Indian J Sci Technol. https://doi.org/10.17485/ijst/2016/v9i38/86938
Lalami I, Frein Y, Gayon JP (2017) Production planning in automotive powertrain plants: a case study. Int J Prod Res 55(18):5378–5393. https://doi.org/10.1080/00207543.2017.1315192
Lee HL, Padmanabhan V, Whang S (1997) The bullwhip effect in supply chains 1. Sloan Manag Rev Assoc 38(3):93–102. https://doi.org/10.1287/mnsc.43.4.546
Lee DU, Villasenor JD, Luk W, Leong PHW (2006) A hardware Gaussian noise generator using the box-muller method and its error analysis. IEEE Trans Comput 55(6):659–671. https://doi.org/10.1109/TC.2006.81
Lv Y, Zhang J, Qin W (2017) A genetic regulatory network-based method for dynamic hybrid flow shop scheduling with uncertain processing times. Appl Sci 7(1):23. https://doi.org/10.3390/app7010023
Maheut J (2013) Modelos y Algoritmos Basados en el Concepto Stroke para la Planificación y Programación de Operaciones con Alternativas en Redes de Suministro. Universitat Politècnica de València, Valencia (Spain). https://doi.org/10.4995/Thesis/10251/29290
Maheut J, Garcia-Sabater JP (2011) La matriz de operaciones y materiales y la matriz de operaciones y recursos, un nuevo enfoque para resolver el problema GMOP basado en el concepto del stroke. Direccion y Organizacion 45:46–57
Maheut J, Garcia-sabater JP, Mula J (2012) A supply chain operations lot-sizing and scheduling model with alternative operations. In: Sethi SP, Bogataj M, Ros-McDonnell L (eds) Industrial engineering: innovative networks. Springer, London, pp 309–316. https://doi.org/10.1007/978-1-4471-2321-7
Meindl B, Templ M (2012) Analysis of commercial and free and open source solvers for linear optimization problems. Common Tools and Harmonized Methodologies for SDC in the ESS, pp 1–13. http://neon.vb.cbs.nl/cascprivate/..%5Ccasc%5CESSNet2%5Cdeliverable_solverstudy.pdf. Accessed 15 Dec 2016
Meyr H (2002) Simultaneous lotsizing and scheduling on parallel machines. Eur J Oper Res 139(2):277–292. https://doi.org/10.1016/S0377-2217(01)00373-3
Narayanan A, Robinson P (2010) Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems. Int J Prod Econ 127(1):85–94. https://doi.org/10.1016/j.ijpe.2010.04.038
Nedaei H, Mahlooji H (2014) Joint multi-objective master production scheduling and rolling horizon policy analysis in make-to-order supply chains. Int J Prod Res 52(9):2767–2787. https://doi.org/10.1080/00207543.2014.884732
Newman M (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46(5):323–351. https://doi.org/10.1080/00107510500052444
Omar MK, Bennell JA (2009) Revising the master production schedule in a HPP framework context. Int J Prod Res 47(20):5857–5878. https://doi.org/10.1080/00207540802130803
Pérez C (2002) Estadística práctica con Statgraphics®. PEARSON EDUCACIÓN, S. A, Madrid
Poler R, Mula J (2011) Forecasting model selection through out-of-sample rolling horizon weighted errors. Expert Syst Appl 38(12):14778–14785. https://doi.org/10.1016/j.eswa.2011.05.072
Prasad PSS, Krishnaiah Chetty OV (2001) Multilevel lot sizing with a genetic algorithm under fixed and rolling horizons. Int J Adv Manuf Technol 18(7):520–527. https://doi.org/10.1007/s0017010180520
Rafiei R, Gaudreault J, Bouchard M, Santa-Eulalia L (2012) A reactive planning approach for demand-driven wood remanufacturing industry: a real-scale application, vol 71. CIRRELT, Montreal
Rafiei R, Nourelfath M, Gaudreault J, Santa-Eulalia LA, Bouchard M (2014) A periodic re-planning approach for demand-driven wood remanufacturing industry: a real-scale application. Int J Prod Res 52(14):4198–4215. https://doi.org/10.1080/00207543.2013.869631
Ramezanian R, Fallah Sanami S, Shafiei Nikabadi M (2017) A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry. Int J Adv Manuf Technol 88(9–12):2389–2403. https://doi.org/10.1007/s00170-016-8955-z
Rodriguez MA, Montagna JM, Vecchietti A, Corsano G (2017) Generalized disjunctive programming model for the multi-period production planning optimization: an application in a polyurethane foam manufacturing plant. Comput Chem Eng 103:69–80. https://doi.org/10.1016/j.compchemeng.2017.03.006
Sahin F, Narayanan A, Robinson EP (2013) Rolling horizon planning in supply chains: review, implications and directions for future research. Int J Prod Res 51(18):5413–5436. https://doi.org/10.1080/00207543.2013.775523
Sethi S, Sorger G (1991) A theory of rolling horizon decision making. Ann Oper Res 29(1):387–415. https://doi.org/10.1007/BF02283607
Simpson NC (2001) Questioning the relative virtues of dynamic lot sizing rules. Comput Oper Res 28(9):899–914. https://doi.org/10.1016/S0305-0548(00)00015-0
Stadtler H (2000) Improved rolling schedules for the dynamic single-level lot-sizing problem. Manag Sci 46(2):318–326. https://doi.org/10.1287/mnsc.46.2.318.11924
Stadtler H (2003) Multilevel lot sizing with setup times and multiple constrained resources: internally rolling schedules with lot-sizing windows. Oper Res 51(3):487–502. https://doi.org/10.1287/opre.51.3.487.14949
Tiacci L, Saetta S (2012) Demand forecasting, lot sizing and scheduling on a rolling horizon basis. Int J Prod Econ 140:803–814. https://doi.org/10.1016/j.ijpe.2012.02.007
Trigeiro WW (1987) A dual-cost heuristic for the capacitated lot sizing problem. IIE Trans 19(1):67–72. https://doi.org/10.1080/07408178708975371
Wolsey LA (2002) Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Manage Sci 48(12):1587–1602. https://doi.org/10.1287/mnsc.48.12.1587.442
Xie J, Zhao X, Lee TS (2003) Freezing the master production schedule under single resource constraint and demand uncertainty. Int J Prod Econ 83(1):65–84. https://doi.org/10.1016/S0925-5273(02)00262-1
Yıldırım I, Tan B, Karaesmen F (2005) A multiperiod stochastic production planning and sourcing problem with service level constraints. OR Spectrum 27(2–3):471–489. https://doi.org/10.1007/s00291-005-0203-0
Zhao X, Xie J (1998) Multilevel lot-sizing heuristics and freezing the master production schedule in material requirements planning systems. Prod Plan Control 9(4):371–384. https://doi.org/10.1080/095372898234109
Zoller K, Robrade A (1988) Efficient heuristics for dynamic lot sizing. Int J Prod Res 26(2):249–265. https://doi.org/10.1080/00207548808947857
Zulkafli NI, Kopanos GM (2017) Integrated condition-based planning of production and utility systems under uncertainty. J Clean Prod 167:776–805. https://doi.org/10.1016/j.jclepro.2017.08.152
[-]