- -

Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center

Mostrar el registro completo del ítem

Wang, J.; Li, X.; Ruiz García, R.; Xu, H.; Chu, D. (2020). Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center. Service Oriented Computing and Applications. 14(2):101-118. https://doi.org/10.1007/s11761-020-00290-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176253

Ficheros en el ítem

Metadatos del ítem

Título: Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center
Autor: Wang, Jia Li, Xiaoping Ruiz García, Rubén Xu, Hanchuan Chu, Dianhui
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
[EN] Total profit is one of the most important factors to be considered from the perspective of resource providers. In this paper, an original MapReduce workflow scheduling with deadline and data locality is proposed to ...[+]
Palabras clave: MapReduce workflow scheduling , Heterogeneous cloud center , Deadline , Data locality,Profit
Derechos de uso: Reserva de todos los derechos
Fuente:
Service Oriented Computing and Applications. (issn: 1863-2386 )
DOI: 10.1007/s11761-020-00290-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11761-020-00290-1
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/
info:eu-repo/grantAgreement/NSFC//61832004/
info:eu-repo/grantAgreement/NSFC//61872077/
info:eu-repo/grantAgreement/National Key Research and Development Program, China//2017YFB1400801/
Agradecimientos:
This work is supported by the National Key Research and Development Program of China (No. 2017YFB1400801), the National Natural Science Foundation of China (Nos. 61872077, 61832004) and Collaborative Innovation Center of ...[+]
Tipo: Artículo

References

Zaharia M, Chowdhury M, Franklin M et al (2010) Spark: cluster computing with working sets. In: Usenix conference on hot topics in cloud computing, pp 1765–1773

Li L, Ma Z, Liu L et al (2013) Hadoop-based ARIMA algorithm and its application in weather forecast. Int J Database Theory Appl 6(5):119–132

Xun Y, Zhang J, Qin X (2017) FiDoop: parallel mining of frequent itemsets using MapReduce. IEEE Trans Syst Man Cybern Syst 46(3):313–325 [+]
Zaharia M, Chowdhury M, Franklin M et al (2010) Spark: cluster computing with working sets. In: Usenix conference on hot topics in cloud computing, pp 1765–1773

Li L, Ma Z, Liu L et al (2013) Hadoop-based ARIMA algorithm and its application in weather forecast. Int J Database Theory Appl 6(5):119–132

Xun Y, Zhang J, Qin X (2017) FiDoop: parallel mining of frequent itemsets using MapReduce. IEEE Trans Syst Man Cybern Syst 46(3):313–325

Wang Y, Shi W (2014) Budget-driven scheduling algorithms for batches of MapReduce jobs in heterogeneous clouds. IEEE Trans Cloud Comput 2(3):306–319

Tiwari N, Sarkar S, Bellur U et al (2015) Classification framework of MapReduce scheduling algorithms. ACM Comput Surv 47(3):1–49

Bu Y, Howe B, Balazinska M et al (2012) The HaLoop approach to large-scale iterative data analysis. VLDB J 21(2):169–190

Gunarathne T, Zhang B, Wu T et al (2013) Scalable parallel computing on clouds using Twister4Azure iterative MapReduce. Future Gener Comput Syst 29(4):1035–1048

Zhang Y, Gao Q, Gao L et al (2012) iMapReduce: a distributed computing framework for iterative computation. J Grid Comput 10(1):47–68

Dong X, Wang Y, Liao H (2011) Scheduling mixed real-time and non-real-time applications in MapReduce environment. In: International conference on parallel and distributed systems, pp 9–16

Tang Z, Zhou J, Li K et al (2013) A MapReduce task scheduling algorithm for deadline constraints. Clust Comput 16(4):651–662

Zhang W, Rajasekaran S, Wood T et al (2014) MIMP: deadline and interference aware scheduling of Hadoop virtual machines. In: International symposium on cluster, cloud and grid computing, pp 394–403

Teng F, Magoulès F, Yu L et al (2014) A novel real-time scheduling algorithm and performance analysis of a MapReduce-based cloud. J Supercomput 69(2):739–765

Palanisamy B, Singh A, Liu L (2015) Cost-effective resource provisioning for MapReduce in a cloud. IEEE Trans Parallel Distrib Syst 26(5):1265–1279

Hashem I, Anuar N, Marjani M et al (2018) Multi-objective scheduling of MapReduce jobs in big data processing. Multimed Tools Appl 77(8):9979–9994

Xu X, Tang M, Tian Y (2017) QoS-guaranteed resource provisioning for cloud-based MapReduce in dynamical environments. Future Gener Comput Syst 78(1):18–30

Li H, Wei X, Fu Q et al (2014) MapReduce delay scheduling with deadline constraint. Concurr Comput Pract Exp 26(3):766–778

Polo J, Becerra Y, Carrera D et al (2013) Deadline-based MapReduce workload management. IEEE Trans Netw Serv Manag 10(2):231–244

Chen C, Lin J, Kuo S (2018) MapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systems. IEEE Trans Cloud Comput 6(1):127–140

Kao Y, Chen Y (2016) Data-locality-aware MapReduce real-time scheduling framework. J Syst Softw 112:65–77

Bok K, Hwang J, Lim J et al (2017) An efficient MapReduce scheduling scheme for processing large multimedia data. Multimed Tools Appl 76(16):1–24

Chen Y, Borthakur D, Borthakur D et al (2012) Energy efficiency for large-scale MapReduce workloads with significant interactive analysis. In: ACM european conference on computer systems, pp 43–56

Mashayekhy L, Nejad M, Grosu D et al (2015) Energy-aware scheduling of MapReduce jobs for big data applications. IEEE Trans Parallel Distrib Syst 26(10):2720–2733

Lei H, Zhang T, Liu Y et al (2015) SGEESS: smart green energy-efficient scheduling strategy with dynamic electricity price for data center. J Syst Softw 108:23–38

Oliveira D, Ocana K, Baiao F et al (2012) A provenance-based adaptive scheduling heuristic for parallel scientific workflows in clouds. J Grid Comput 10(3):521–552

Li S, Hu S, Abdelzaher T (2015) The packing server for real-time scheduling of MapReduce workflows. In: IEEE real-time and embedded technology and applications symposium, pp 51–62

Cai Z, Li X, Ruiz R et al (2017) A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds. Future Gener Comput Syst 71:57–72

Cai Z, Li X, Ruiz R (2017) Resource provisioning for task-batch based workflows with deadlines in public clouds. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2017.2663426

Cai Z, Li X, Gupta J (2016) Heuristics for provisioning services to workflows in XaaS clouds. IEEE Trans Serv Comput 9(2):250–263

Li X, Cai Z (2017) Elastic resource provisioning for cloud workflow applications. IEEE Trans Autom Sci Eng 14(2):1195–1210

Tang Z, Liu M, Ammar A et al (2014) An optimized MapReduce workflow scheduling algorithm for heterogeneous computing. J Supercomput 72(6):1–21

Xu C, Yang J, Yin K et al (2017) Optimal construction of virtual networks for cloud-based MapReduce workflows. Comput Netw 112:194–207

Chiara S, Danilo A, Gianpaolo C et al (2013) Optimizing service selection and allocation in situational computing applications. IEEE Trans Serv Comput 6(3):414–428

Baresi L, Elisabetta D, Carlo G et al (2007) A framework for the deployment of adaptable web service compositions. Serv Oriented Comput Appl 1(1):75–91

Lim H, Herodotou H, Babu S (2012) Stubby: a transformation-based optimizer for MapReduce workflows. VLDB Endow 5(11):1196–1207

Ke H, Li P, Guo S et al (2016) On traffic-aware partition and aggregation in MapReduce for big data applications. IEEE Trans Parallel Distrib Syst 27(3):818–828

Yu W, Wang Y, Que X et al (2015) Virtual shuffling for efficient data movement in MapReduce. IEEE Trans Comput 64(2):556–568

Chowdhury M, Zaharia M, Ma J et al (2011) Managing data transfers in computer clusters with orchestra. ACM SIGCOMM Comput Commun 41(4):98–109

Guo D, Xie J, Zhou X et al (2015) Exploiting efficient and scalable shuffle transfers in future data center network. IEEE Trans Parallel Distrib Syst 26(4):997–1009

Li D, Yu Y, He W et al (2015) Willow: saving data center network energy for network-limited flows. IEEE Trans Parallel Distrib Syst 26(9):2610–2620

Tan J, Meng X, Zhang L (2013) Coupling task progress for MapReduce resource-aware scheduling. In: IEEE INFOCOM, pp 1618–1626

Hammoud M, Rehman M, Sakr M (2012) Center-of-gravity reduce task scheduling to lower MapReduce network traffic. In: International conference on cloud computing, pp 49–58

Guo Z, Fox G, Zhou M et al (2012) Improving resource utilization in MapReduce. In: International conference on cluster computing, pp 402–410

Fischer M, Su X, Yin Y (2010) Assigning tasks for efficiency in Hadoop. In: Proceedings of the 22nd ACM symposium on parallelism in algorithms and architectures, pp 30–39

Zhu Y, Jiang Y, Wu W et al (2014) Minimizing makespan and total completion time in MapReduce-like systems. In: IEEE INFOCOM, pp 2166–2174

Kavulya S, Tan J, Gandhi R et al (2010) An analysis of traces from a production MapReduce cluster. In: IEEE/ACM international conference on cluster, cloud and grid computing, pp 94–103

Abrishami S, Naghibzadeh M, Epema D (2013) Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service clouds. Future Gener Comput Syst 29(1):158–169

Fernando B, Edmundo R (2010) Towards the scheduling of multiple workflows on computational grids. J Grid Comput 8(3):419–441

Tiwari N, Sarkar S, Bellur U et al (2015) Classification framework of MapReduce scheduling algorithms. ACM Comput Surv 47(3):1–38

Verma A, Cherkasova L, Campbell R (2013) Orchestrating an ensemble of MapReduce jobs for minimizing their makespan. IEEE Trans Dependable Secur Comput 10(5):314–327

Heintz B, Chandra A, Sitaraman R et al (2017) End-to-end optimization for geo-distributed MapReduce. IEEE Trans Cloud Comput 4(3):293–306

Chen L, Li X (2018) Cloud workflow scheduling with hybrid resource provisioning. J Supercomput 74(12):6529–6553

Li X, Jiang T, Ruiz R (2016) Heuristics for periodical batch job scheduling in a MapReduce computing framework. Inf Sci 326:119–133

Vanhoucheabcd M, Maenhout B, Tavares L (2008) An evaluation of the adequacy of project network generators with systematically sampled networks. Eur J Oper Res 187(2):511–524

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem