- -

AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Coupé, Pierrick es_ES
dc.contributor.author Mansencal, Boris es_ES
dc.contributor.author Clement, Michael es_ES
dc.contributor.author Giraud, Rémi es_ES
dc.contributor.author Denis de Senneville, Baudouin es_ES
dc.contributor.author Ta, Vinh-Thong es_ES
dc.contributor.author Lepetit, Vincent es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.date.accessioned 2021-11-05T14:06:48Z
dc.date.available 2021-11-05T14:06:48Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 1053-8119 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176258
dc.description.abstract [EN] Whole brain segmentation of fine-grained structures using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous DL methods proposed to use a single convolution neural network (CNN) or few independent CNNs. In this paper, we present a novel ensemble method based on a large number of CNNs processing different overlapping brain areas. Inspired by parliamentary decision-making systems, we propose a framework called AssemblyNet, made of two "assemblies" of U-Nets. Such a parliamentary system is capable of dealing with complex decisions, unseen problem and reaching a relevant consensus. AssemblyNet introduces sharing of knowledge among neighboring U-Nets, an "amendment" procedure made by the second assembly at higher-resolution to refine the decision taken by the first one, and a final decision obtained by majority voting. During our validation, AssemblyNet showed competitive performance compared to state-of-the-art methods such as U-Net, Joint label fusion and SLANT. Moreover, we investigated the scan-rescan consistency and the robustness to disease effects of our method. These experiences demonstrated the reliability of AssemblyNet. Finally, we showed the interest of using semi-supervised learning to improve the performance of our method. es_ES
dc.description.sponsorship This work benefited from the support of the project DeepvolBrain of the French National Research Agency (ANR-18-CE45-0013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-0 3-02, HL-MRI Project), Cluster of excellence CPU and the CNRS/INSERM for the DeepMultiBrain project. This study has been also supported by the DPI2017-87743-R grant from the Spanish Ministerio de Economia, Industria Competitividad. The C-MIND data used in the preparation of this article were obtained from the C-MIND Data Repository (accessed in Feb 2015) created by the C-MIND study of Normal Brain Development. This is a multisite, longitudinal study of typically developing children from ages newborn through young adulthood conducted by Cincinnati Children's Hospital Medical Center and UCLA and supported by the National Institute of Child Health and Human Development (Contract #s HHSN275200900018C). The NDAR data used in the preparation of this manuscript were obtained from the NIH-supported National Database for Autism Research (NDAR). This is a multisite, longitudinal study of typically developing children from ages newborn through young adulthood conducted by the Brain Development Cooperative Group and supported by the National Institute of Child Health and Human Development, the National Institute on Drug Abuse, the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke (Contract #s N01- HD02-3343, N01-MH9-0002, and N01-NS-9-2314, -2315, -2316, -2317, -2319 and -2320). A listing of the participating sites and a complete listing of the study investigators can be found at http://pediatricmri.nih.gov/nihpd/info/participating_centers.html. The ADNI data used in the preparation of this manuscript were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI data are disseminated by the Laboratory for NeuroImaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514 and the Dana Foundation. The OASIS data used in the preparation of this manuscript were obtained from the OASIS project funded by grants P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584. The AIBL data used in the preparation of this manuscript were obtained from the AIBL study of ageing funded by the Common-wealth Scientific Industrial Research Organization (CSIRO; a publicly funded government research organization), Science Industry Endowment Fund, National Health and Medical Research Council of Australia (project grant 1011689), Alzheimer's Association, Alzheimer's Drug Discovery Foundation, and an anonymous foundation. The ICBM data used in the preparation of this manuscript were supported by Human Brain Project grant PO1MHO52176-11 (ICBM, P.I. Dr John Mazziotta) and Canadian Institutes of Health Research grant MOP-34996. The IXI data used in the preparation of this manuscript were supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) GR/S21533/02. ABIDE primary support for the work by Adriana Di Martino was provided by the NIMH (K23MH087770) and the Leon Levy Foundation. Primary support for the work by Michael P. Milham and the INDI team was provided by gifts from Joseph P. Healy and the Stavros Niarchos Foundation to the Child Mind Institute, as well as by an NIMH award to MPM (R03MH096321). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof NeuroImage es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Deep learning es_ES
dc.subject Brain es_ES
dc.subject Segmentation es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.neuroimage.2020.117026 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87743-R/ES/DESARROLLO DE UNA PLATAFORMA ONLINE PARA EL ANALISIS ANATOMICO DEL CEREBRO TOLERANTE A LA PRESENCIA DE ALTERACIONES PATOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-57/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-03-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//N01- HD02-3343/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//N01-MH9-0002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//N01-NS-9-2314/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//N01-NS-9-2315/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//N01-NS-9-2316/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//N01-NS-9-2317/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//N01-NS-9-2319/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//N01-NS-9-2320/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U01 AG024904/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P30 AG010129/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//K01 AG030514/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P50 AG05681//OASIS Project/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P01 AG03991//OASIS Project/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 AG021910//OASIS Project/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P50 MH071616//OASIS Project/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U24 RR021382/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 MH56584/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NHMRC//1011689/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPSRC//GR%2FS21533%2F02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIMH//K23MH087770/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIMH//R03MH096321/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NICHD//HHSN275200900018C/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Human Brain Project//PO1MHO5217611/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIHR//MOP34996/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE45-0013/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Coupé, P.; Mansencal, B.; Clement, M.; Giraud, R.; Denis De Senneville, B.; Ta, V.; Lepetit, V.... (2020). AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation. NeuroImage. 219:1-12. https://doi.org/10.1016/j.neuroimage.2020.117026 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.neuroimage.2020.117026 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 219 es_ES
dc.identifier.pmid 32522665 es_ES
dc.relation.pasarela S\433038 es_ES
dc.contributor.funder Human Brain Project es_ES
dc.contributor.funder Leon Levy Foundation es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Alzheimer's Drug Discovery Foundation es_ES
dc.contributor.funder Canadian Institutes of Health Research es_ES
dc.contributor.funder National Institute on Drug Abuse, EEUU es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder National Institute of Mental Health, EEUU es_ES
dc.contributor.funder Science and Industry Endowment Fund, Australia es_ES
dc.contributor.funder National Health and Medical Research Council, Australia es_ES
dc.contributor.funder Commonwealth Scientific and Industrial Research Organisation es_ES
dc.contributor.funder National Institute of Neurological Disorders and Stroke, EEUU es_ES
dc.contributor.funder National Institute of Child Health and Human Development, EEUU es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.contributor.funder National Institute of Biomedical Imaging and Bioengineering, EEUU es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem