Mostrar el registro sencillo del ítem
dc.contributor.author | Coupé, Pierrick | es_ES |
dc.contributor.author | Mansencal, Boris | es_ES |
dc.contributor.author | Clement, Michael | es_ES |
dc.contributor.author | Giraud, Rémi | es_ES |
dc.contributor.author | Denis de Senneville, Baudouin | es_ES |
dc.contributor.author | Ta, Vinh-Thong | es_ES |
dc.contributor.author | Lepetit, Vincent | es_ES |
dc.contributor.author | Manjón Herrera, José Vicente | es_ES |
dc.date.accessioned | 2021-11-05T14:06:48Z | |
dc.date.available | 2021-11-05T14:06:48Z | |
dc.date.issued | 2020-10-01 | es_ES |
dc.identifier.issn | 1053-8119 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176258 | |
dc.description.abstract | [EN] Whole brain segmentation of fine-grained structures using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous DL methods proposed to use a single convolution neural network (CNN) or few independent CNNs. In this paper, we present a novel ensemble method based on a large number of CNNs processing different overlapping brain areas. Inspired by parliamentary decision-making systems, we propose a framework called AssemblyNet, made of two "assemblies" of U-Nets. Such a parliamentary system is capable of dealing with complex decisions, unseen problem and reaching a relevant consensus. AssemblyNet introduces sharing of knowledge among neighboring U-Nets, an "amendment" procedure made by the second assembly at higher-resolution to refine the decision taken by the first one, and a final decision obtained by majority voting. During our validation, AssemblyNet showed competitive performance compared to state-of-the-art methods such as U-Net, Joint label fusion and SLANT. Moreover, we investigated the scan-rescan consistency and the robustness to disease effects of our method. These experiences demonstrated the reliability of AssemblyNet. Finally, we showed the interest of using semi-supervised learning to improve the performance of our method. | es_ES |
dc.description.sponsorship | This work benefited from the support of the project DeepvolBrain of the French National Research Agency (ANR-18-CE45-0013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-0 3-02, HL-MRI Project), Cluster of excellence CPU and the CNRS/INSERM for the DeepMultiBrain project. This study has been also supported by the DPI2017-87743-R grant from the Spanish Ministerio de Economia, Industria Competitividad. The C-MIND data used in the preparation of this article were obtained from the C-MIND Data Repository (accessed in Feb 2015) created by the C-MIND study of Normal Brain Development. This is a multisite, longitudinal study of typically developing children from ages newborn through young adulthood conducted by Cincinnati Children's Hospital Medical Center and UCLA and supported by the National Institute of Child Health and Human Development (Contract #s HHSN275200900018C). The NDAR data used in the preparation of this manuscript were obtained from the NIH-supported National Database for Autism Research (NDAR). This is a multisite, longitudinal study of typically developing children from ages newborn through young adulthood conducted by the Brain Development Cooperative Group and supported by the National Institute of Child Health and Human Development, the National Institute on Drug Abuse, the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke (Contract #s N01- HD02-3343, N01-MH9-0002, and N01-NS-9-2314, -2315, -2316, -2317, -2319 and -2320). A listing of the participating sites and a complete listing of the study investigators can be found at http://pediatricmri.nih.gov/nihpd/info/participating_centers.html. The ADNI data used in the preparation of this manuscript were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI data are disseminated by the Laboratory for NeuroImaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514 and the Dana Foundation. The OASIS data used in the preparation of this manuscript were obtained from the OASIS project funded by grants P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584. The AIBL data used in the preparation of this manuscript were obtained from the AIBL study of ageing funded by the Common-wealth Scientific Industrial Research Organization (CSIRO; a publicly funded government research organization), Science Industry Endowment Fund, National Health and Medical Research Council of Australia (project grant 1011689), Alzheimer's Association, Alzheimer's Drug Discovery Foundation, and an anonymous foundation. The ICBM data used in the preparation of this manuscript were supported by Human Brain Project grant PO1MHO52176-11 (ICBM, P.I. Dr John Mazziotta) and Canadian Institutes of Health Research grant MOP-34996. The IXI data used in the preparation of this manuscript were supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) GR/S21533/02. ABIDE primary support for the work by Adriana Di Martino was provided by the NIMH (K23MH087770) and the Leon Levy Foundation. Primary support for the work by Michael P. Milham and the INDI team was provided by gifts from Joseph P. Healy and the Stavros Niarchos Foundation to the Child Mind Institute, as well as by an NIMH award to MPM (R03MH096321). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | NeuroImage | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Brain | es_ES |
dc.subject | Segmentation | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.neuroimage.2020.117026 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87743-R/ES/DESARROLLO DE UNA PLATAFORMA ONLINE PARA EL ANALISIS ANATOMICO DEL CEREBRO TOLERANTE A LA PRESENCIA DE ALTERACIONES PATOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-57/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-03-02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//N01- HD02-3343/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//N01-MH9-0002/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//N01-NS-9-2314/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//N01-NS-9-2315/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//N01-NS-9-2316/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//N01-NS-9-2317/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//N01-NS-9-2319/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//N01-NS-9-2320/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//U01 AG024904/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P30 AG010129/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//K01 AG030514/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P50 AG05681//OASIS Project/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P01 AG03991//OASIS Project/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01 AG021910//OASIS Project/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P50 MH071616//OASIS Project/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//U24 RR021382/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01 MH56584/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NHMRC//1011689/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EPSRC//GR%2FS21533%2F02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIMH//K23MH087770/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIMH//R03MH096321/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NICHD//HHSN275200900018C/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Human Brain Project//PO1MHO5217611/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIHR//MOP34996/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-18-CE45-0013/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Coupé, P.; Mansencal, B.; Clement, M.; Giraud, R.; Denis De Senneville, B.; Ta, V.; Lepetit, V.... (2020). AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation. NeuroImage. 219:1-12. https://doi.org/10.1016/j.neuroimage.2020.117026 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.neuroimage.2020.117026 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 219 | es_ES |
dc.identifier.pmid | 32522665 | es_ES |
dc.relation.pasarela | S\433038 | es_ES |
dc.contributor.funder | Human Brain Project | es_ES |
dc.contributor.funder | Leon Levy Foundation | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | Alzheimer's Drug Discovery Foundation | es_ES |
dc.contributor.funder | Canadian Institutes of Health Research | es_ES |
dc.contributor.funder | National Institute on Drug Abuse, EEUU | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | National Institute of Mental Health, EEUU | es_ES |
dc.contributor.funder | Science and Industry Endowment Fund, Australia | es_ES |
dc.contributor.funder | National Health and Medical Research Council, Australia | es_ES |
dc.contributor.funder | Commonwealth Scientific and Industrial Research Organisation | es_ES |
dc.contributor.funder | National Institute of Neurological Disorders and Stroke, EEUU | es_ES |
dc.contributor.funder | National Institute of Child Health and Human Development, EEUU | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.contributor.funder | National Institute of Biomedical Imaging and Bioengineering, EEUU | es_ES |