- -

In vitro antimicrobial activity of immobilised essential oil components against Helicobacter pylori

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In vitro antimicrobial activity of immobilised essential oil components against Helicobacter pylori

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz Rico, María es_ES
dc.contributor.author Moreno Trigos, Mª Yolanda es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.date.accessioned 2021-11-05T14:06:55Z
dc.date.available 2021-11-05T14:06:55Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 0959-3993 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176263
dc.description.abstract [EN] Available disinfection methods and therapies against Helicobacter pylori have multiple disadvantages, such as increased prevalence of antibiotic-resistant strains, which requires the search for novel effective antimicrobial agents against H. pylori. Among them, naturally-occurring antimicrobial compounds, like essential oil components (EOCs), have been reported as substances with anti-H. pylori potential. To avoid the disadvantages associated with using EOCs in their free form, including volatility, low water solubility and intense sensory properties, their immobilisation in inert supports has recently been developed. This study sought to evaluate the inhibitory properties of EOCs immobilised on silica microparticles against H. pylori and to elucidate the mechanism of action of the immobilised antimicrobials. After the preparation and characterisation of the antimicrobial supports, the susceptibility of H. pylori in the presence of the immobilised compounds was assessed by plate count, fluorescent viability staining and direct viable count-fluorescent in situ hybridisation analyses. The antimicrobial supports were found to inhibit H. pylori growth, and to induce morphological and metabolic alterations to the H. pylori membrane, with a minimum bactericidal concentration value between 25 and 50 mu g/ml according to the tested EOC. These findings indicate that immobilised EOCs can be used as potential antimicrobial agents for H. pylori clearance and treatment. es_ES
dc.description.sponsorship Authors gratefully acknowledge the financial support from the Ministerio de Ciencia, Innovacion y Universidades, the Agencia Estatal de Investigacion and FEDER-EU (Project RTI2018-101599-B-C21). M.R.R. acknowledges the Generalitat Valenciana for their Postdoctoral Fellowship (APOSTD/2019/118). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof World Journal of Microbiology and Biotechnology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antimicrobial agent es_ES
dc.subject Helicobacter pylori es_ES
dc.subject Immobilization es_ES
dc.subject Essential oil components es_ES
dc.subject Silica microparticles es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title In vitro antimicrobial activity of immobilised essential oil components against Helicobacter pylori es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11274-019-2782-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C21/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//APOSTD%2F2019%2F118//CONTRATO POSDOCTORAL GVA-RUIZ RICO. PROYECTO: DESARROLLO DE NUEVOS SISTEMAS ANTIMICROBIANOS / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Ruiz Rico, M.; Moreno Trigos, MY.; Barat Baviera, JM. (2020). In vitro antimicrobial activity of immobilised essential oil components against Helicobacter pylori. World Journal of Microbiology and Biotechnology. 36(1):1-9. https://doi.org/10.1007/s11274-019-2782-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11274-019-2782-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 31832784 es_ES
dc.relation.pasarela S\399033 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Adams BL, Bates TC, Oliver JD (2003) Survival of Helicobacter pylori in a natural freshwater environment. Appl Environ Microbiol 69:7462–7466. https://doi.org/10.1128/AEM.69.12.7462-7466.2003 es_ES
dc.description.references Ali S, Khan A, Ahmed I et al (2005) Antimicrobial activities of eugenol and cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Microbiol Antimicrob 4:20. https://doi.org/10.1186/1476-0711-4-20 es_ES
dc.description.references Altiok D, Altiok E, Tihminlioglu F (2010) Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J Mater Sci Mater Med 21:2227–2236. https://doi.org/10.1007/s10856-010-4065-x es_ES
dc.description.references Ardalan A, Vala MH, Sarie H et al (2017) Formulation and evaluation of food-grade antimicrobial cinnamon oil nanoemulsions for Helicobacter pylori eradication. J Bionanosci 11:435–441. https://doi.org/10.1166/jbns.2017.1463 es_ES
dc.description.references Bergonzelli GE, Donnicola D, Porta N, Corthésy-Theulaz IE (2003) Essential oils as components of a diet-based approach to management of Helicobacter infection. Antimicrob Agents Chemother 47:3240–3246. https://doi.org/10.1128/AAC.47.10.3240-3246.2003 es_ES
dc.description.references Bernardos A, Marina T, Žáček P et al (2015) Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. J Sci Food Agric 95:2824–2831. https://doi.org/10.1002/jsfa.7022 es_ES
dc.description.references Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/J.IJFOODMICRO.2004.03.022 es_ES
dc.description.references Burt SA, Vlielander R, Haagsman HP, Veldhuizen EJA (2005) Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J Food Prot 68:919–926. https://doi.org/10.4315/0362-028X-68.5.919 es_ES
dc.description.references Cappannella E, Benucci I, Lombardelli C et al (2016) Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: bench-scale fluidized-bed reactor study. Food Chem 210:49–55. https://doi.org/10.1016/J.FOODCHEM.2016.04.089 es_ES
dc.description.references Chen F, Shi Z, Neoh KG, Kang ET (2009) Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng 104:30–39. https://doi.org/10.1002/bit.22363 es_ES
dc.description.references CLSI (2018) Performance standards for antimicrobial susceptibility testing, 28th edn. CLSI, Wayne es_ES
dc.description.references Eusebi LH, Zagari RM, Bazzoli F (2014) Epidemiology of Helicobacter pylori infection. Helicobacter 19:1–5. https://doi.org/10.1111/hel.12165 es_ES
dc.description.references Fuccio L, Laterza L, Zagari RM et al (2008) Treatment of Helicobacter pylori infection. BMJ 337:1454. https://doi.org/10.1136/bmj.a1454 es_ES
dc.description.references García-Ríos E, Ruiz-Rico M, Guillamón JM et al (2018) Improved antimicrobial activity of immobilised essential oil components against representative spoilage wine microorganisms. Food Control 94:177–186. https://doi.org/10.1016/J.FOODCONT.2018.07.005 es_ES
dc.description.references Gutierrez J, Rodriguez G, Barry-Ryan C, Bourke P (2008) Efficacy of plant essential oils against foodborne pathogens and spoilage bacteria associated with ready-to-eat vegetables: antimicrobial and sensory screening. J Food Prot 71:1846–1854. https://doi.org/10.4315/0362-028X-71.9.1846 es_ES
dc.description.references Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251. https://doi.org/10.1002/anie.200503075 es_ES
dc.description.references Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:1–24. https://doi.org/10.3389/fmicb.2012.00012 es_ES
dc.description.references Kahraman MV, Bayramoğlu G, Kayaman-Apohan N, Güngör A (2007) α-Amylase immobilization on functionalized glass beads by covalent attachment. Food Chem 104:1385–1392. https://doi.org/10.1016/J.FOODCHEM.2007.01.054 es_ES
dc.description.references Li L, Wang H (2013) Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo. Adv Healthc Mater 2:1351–1360. https://doi.org/10.1002/adhm.201300051 es_ES
dc.description.references Lv F, Liang H, Yuan Q, Li C (2011) In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int 44:3057–3064. https://doi.org/10.1016/J.FOODRES.2011.07.030 es_ES
dc.description.references Moreno Y, Ferrús MA, Alonso JL et al (2003) Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Res 37:2251–2256. https://doi.org/10.1016/S0043-1354(02)00624-3 es_ES
dc.description.references Moreno Y, Piqueres P, Alonso JL et al (2007) Survival and viability of Helicobacter pylori after inoculation into chlorinated drinking water. https://doi.org/10.1016/j.watres.2007.05.020 es_ES
dc.description.references Nazzaro F, Fratianni F, De Martino L et al (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451–1474. https://doi.org/10.3390/ph6121451 es_ES
dc.description.references Nilsson H-O, Blom J, Abu-Al-Soud W et al (2002) Effect of cold starvation, acid stress, and nutrients on metabolic activity of Helicobacter pylori. Appl Environ Microbiol 68:11–19. https://doi.org/10.1128/AEM.68.1.11-19.2002 es_ES
dc.description.references Peng H, Xiong H, Li J et al (2010) Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chem 121:23–28. https://doi.org/10.1016/J.FOODCHEM.2009.11.085 es_ES
dc.description.references Piqueres P, Moreno Y, Alonso JL, Ferrús MA (2006) A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability. Res Microbiol 157:345–349. https://doi.org/10.1016/j.resmic.2005.09.003 es_ES
dc.description.references Ribes S, Ruiz-Rico M, Pérez-Esteve É et al (2017) Eugenol and thymol immobilised on mesoporous silica-based material as an innovative antifungal system: application in strawberry jam. Food Control. https://doi.org/10.1016/j.foodcont.2017.06.006 es_ES
dc.description.references Ruiz-Rico M, Pérez-Esteve É, Bernardos A et al (2017) Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chem. https://doi.org/10.1016/j.foodchem.2017.04.118 es_ES
dc.description.references Ruiz-Rico M, Pérez-Esteve É, de la Torre C et al (2018) Improving the antimicrobial power of low-effective antimicrobial molecules through nanotechnology. J Food Sci. https://doi.org/10.1111/1750-3841.14211 es_ES
dc.description.references Santiago P, Moreno Y, Ferrús MA (2015) Identification of viable Helicobacter pylori in drinking water supplies by cultural and molecular techniques. Helicobacter 20:252–259. https://doi.org/10.1111/hel.12205 es_ES
dc.description.references Takeuchi H, Trang VT, Morimoto N et al (2014) Natural products and food components with anti-Helicobacter pylori activities. World J Gastroenterol 20:8971–8978. https://doi.org/10.3748/wjg.v20.i27.8971 es_ES
dc.description.references Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12:40–53. https://doi.org/10.1111/1541-4337.12006 es_ES
dc.description.references Vesga F-J, Moreno Y, Ferrús MA et al (2018) Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques. Int J Hyg Environ Health 221:595–601. https://doi.org/10.1016/J.IJHEH.2018.04.010 es_ES
dc.description.references Villalonga R, Díez P, Sánchez A et al (2013) Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles. Chem Eur J 19:7889–7894. https://doi.org/10.1002/chem.201300723 es_ES
dc.description.references Wang Y-K, Kuo F-C, Liu C-J et al (2015) Diagnosis of Helicobacter pylori infection: current options and developments. World J Gastroenterol 21:11221–11235. https://doi.org/10.3748/wjg.v21.i40.11221 es_ES
dc.description.references Wolf VG, Bonacorsi C, Raddi MSG et al (2017) Octyl gallate, a food additive with potential beneficial properties to treat Helicobacter pylori infection. Food Funct 8:2500–2511. https://doi.org/10.1039/C7FO00707H es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem