- -

Performance modeling of the sparse matrix-vector product via convolutional neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance modeling of the sparse matrix-vector product via convolutional neural networks

Mostrar el registro completo del ítem

Barreda, M.; Dolz, MF.; Castaño Alvarez, MA.; Alonso-Jordá, P.; Quintana-Orti, ES. (2020). Performance modeling of the sparse matrix-vector product via convolutional neural networks. The Journal of Supercomputing (Online). 76(11):8883-8900. https://doi.org/10.1007/s11227-020-03186-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176273

Ficheros en el ítem

Metadatos del ítem

Título: Performance modeling of the sparse matrix-vector product via convolutional neural networks
Autor: Barreda, María Dolz, Manuel F. CASTAÑO ALVAREZ, MARIA ASUNCION Alonso-Jordá, Pedro Quintana-Orti, Enrique S.
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Modeling the execution time of the sparse matrix-vector multiplication (SpMV) on a current CPU architecture is especially complex due to (i) irregular memory accesses; (ii) indirect memory referencing; and (iii) low ...[+]
Palabras clave: Sparse matrix-vector multiplication (SpMV) , Performance modeling , Supervised learning , Convolutional neural networks (CNNs)
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercomputing (Online). (eissn: 1573-0484 )
DOI: 10.1007/s11227-020-03186-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-020-03186-1
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/
info:eu-repo/grantAgreement/UJI//POSDOC-A%2F2017%2F11/
info:eu-repo/grantAgreement/GVA//CDEIGENT%2F2018%2F014/
Agradecimientos:
This work was supported by project TIN2017-82972-R from the MINECO, Spain. Manuel F. Dolz was also supported by the Plan GenT project CDEIGENT/2018/014 from the Generalitat Valenciana, Spain. Maria Barreda was also supported ...[+]
Tipo: Artículo

References

Abdelfattah A, Ltaief H, Keyes D (2015) High performance multi-GPU SpMV for multi-component PDE-based applications. In: Träff JL, Hunold S, Versaci F (eds) Euro-Par 2015: parallel processing. Springer, Berlin, pp 601–612

Schiesser WE (2014) Computational mathematics in engineering and applied science: ODEs, DAEs, and PDEs. CRC Press, Boca Raton

Vuduc R, Demmel JW, Yelick KA (2005) OSKI: a library of automatically tuned sparse matrix kernels. J Phys Conf Ser 16:521–530 [+]
Abdelfattah A, Ltaief H, Keyes D (2015) High performance multi-GPU SpMV for multi-component PDE-based applications. In: Träff JL, Hunold S, Versaci F (eds) Euro-Par 2015: parallel processing. Springer, Berlin, pp 601–612

Schiesser WE (2014) Computational mathematics in engineering and applied science: ODEs, DAEs, and PDEs. CRC Press, Boca Raton

Vuduc R, Demmel JW, Yelick KA (2005) OSKI: a library of automatically tuned sparse matrix kernels. J Phys Conf Ser 16:521–530

Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J (2007) Optimization of sparse matrix–vector multiplication on emerging multicore platforms. In: SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp 1–12

Elafrou A, Goumas G, Koziris N (2017) Performance analysis and optimization of sparse matrix–vector multiplication on modern multi- and many-core processors. In: 2017 46th International Conference on Parallel Processing (ICPP), pp 292–301

Li S, Chang H, Zhang J, Zhang Y (2015) Automatic tuning of sparse matrix–vector multiplication on multicore clusters. Sci China Inf Sci 58(9):1–14

Guo P, Wang L (2015) Accurate cross-architecture performance modeling for sparse matri–vector multiplication (SpMV) on GPUs. Concurr Comput Pract Exp 27(13):3281–3294

Li K, Yang W, Li K (2015) Performance analysis and optimization for SpMV on GPU using probabilistic modeling. IEEE Trans Parallel Distrib Syst 26(1):196–205

Eijkhout V, Pozo R (1994) Data structures and algorithms for distributed sparse matrix operations. Technical report

Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T (2018) Recent advances in convolutional neural networks. Pattern Recognit 77(C):354–377

Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Gordon G, Dunson D, Dudík M (eds) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA, 11–13. PMLR, pp 315–323

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, Volume 37 (ICML’15). JMLR org, pp 448–456

Keras: The Python Deep Learning library. https://keras.io/. Accessed Dec 2019

TensorFlow, an open source machine learning library for research and production. https://www.tensorflow.org/. Accessed Dec 2019

Keras + Hyperopt: a very simple wrapper for convenient hyperparameter optimization. http://maxpumperla.com/hyperas/. Accessed Dec 2019

Bergstra J, Komer B, Eliasmith C, Yamins D, Cox D (2015) Hyperopt: a python library for model selection and hyperparameter optimization. Comput Sci Discov. https://doi.org/10.1088/1749-4699/8/1/014008

Bergstra J, Yamins D, Cox DD (2013) Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on International Conference on Machine Learning—Volume 28, ICML’13. JMLR.org, pp I–115–I–123

SuiteSparse Matrix Collection. https://sparse.tamu.edu/. Accessed Dec 2019

Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, Berlin

Pan SJ, Yang Qiang (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–44 05

Götz M, Anzt H (2018) Machine learning-aided numerical linear algebra: convolutional neural networks for the efficient preconditioner generation. In: Procs of ScalA’18: 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, WS at Supercomputing 2018, 11

Zhao Y, Li J, Liao C, Shen X (2018) Bridging the gap between deep learning and sparse matrix format selection. SIGPLAN Not 53(1):94–108

Cui H, Hirasawa S, Kobayashi H, Takizawa H (2018) A machine learning-based approach for selecting SpMV kernels and matrix storage formats. IEICE Trans Inf Syst E101.D(9):2307–2314

Nisa I, Siegel C, Rajam AS, Vishnu A, Sadayappan P (2018) Effective machine learning based format selection and performance modeling for SpMV on GPUs. EasyChair Preprint no. 388, EasyChair

Tiwari A, Laurenzano MA, Carrington L, Snavely A (2012) Modeling power and energy usage of HPC kernels. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD Forum, pp 990–998

Benatia A, Ji W, Wang Y, Shi F (2016) Machine learning approach for the predicting performance of SpMV on GPU. In: 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), pp 894–901

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem