Abdelfattah A, Ltaief H, Keyes D (2015) High performance multi-GPU SpMV for multi-component PDE-based applications. In: Träff JL, Hunold S, Versaci F (eds) Euro-Par 2015: parallel processing. Springer, Berlin, pp 601–612
Schiesser WE (2014) Computational mathematics in engineering and applied science: ODEs, DAEs, and PDEs. CRC Press, Boca Raton
Vuduc R, Demmel JW, Yelick KA (2005) OSKI: a library of automatically tuned sparse matrix kernels. J Phys Conf Ser 16:521–530
[+]
Abdelfattah A, Ltaief H, Keyes D (2015) High performance multi-GPU SpMV for multi-component PDE-based applications. In: Träff JL, Hunold S, Versaci F (eds) Euro-Par 2015: parallel processing. Springer, Berlin, pp 601–612
Schiesser WE (2014) Computational mathematics in engineering and applied science: ODEs, DAEs, and PDEs. CRC Press, Boca Raton
Vuduc R, Demmel JW, Yelick KA (2005) OSKI: a library of automatically tuned sparse matrix kernels. J Phys Conf Ser 16:521–530
Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J (2007) Optimization of sparse matrix–vector multiplication on emerging multicore platforms. In: SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp 1–12
Elafrou A, Goumas G, Koziris N (2017) Performance analysis and optimization of sparse matrix–vector multiplication on modern multi- and many-core processors. In: 2017 46th International Conference on Parallel Processing (ICPP), pp 292–301
Li S, Chang H, Zhang J, Zhang Y (2015) Automatic tuning of sparse matrix–vector multiplication on multicore clusters. Sci China Inf Sci 58(9):1–14
Guo P, Wang L (2015) Accurate cross-architecture performance modeling for sparse matri–vector multiplication (SpMV) on GPUs. Concurr Comput Pract Exp 27(13):3281–3294
Li K, Yang W, Li K (2015) Performance analysis and optimization for SpMV on GPU using probabilistic modeling. IEEE Trans Parallel Distrib Syst 26(1):196–205
Eijkhout V, Pozo R (1994) Data structures and algorithms for distributed sparse matrix operations. Technical report
Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T (2018) Recent advances in convolutional neural networks. Pattern Recognit 77(C):354–377
Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Gordon G, Dunson D, Dudík M (eds) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA, 11–13. PMLR, pp 315–323
Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, Volume 37 (ICML’15). JMLR org, pp 448–456
Keras: The Python Deep Learning library. https://keras.io/. Accessed Dec 2019
TensorFlow, an open source machine learning library for research and production. https://www.tensorflow.org/. Accessed Dec 2019
Keras + Hyperopt: a very simple wrapper for convenient hyperparameter optimization. http://maxpumperla.com/hyperas/. Accessed Dec 2019
Bergstra J, Komer B, Eliasmith C, Yamins D, Cox D (2015) Hyperopt: a python library for model selection and hyperparameter optimization. Comput Sci Discov. https://doi.org/10.1088/1749-4699/8/1/014008
Bergstra J, Yamins D, Cox DD (2013) Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on International Conference on Machine Learning—Volume 28, ICML’13. JMLR.org, pp I–115–I–123
SuiteSparse Matrix Collection. https://sparse.tamu.edu/. Accessed Dec 2019
Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, Berlin
Pan SJ, Yang Qiang (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359
Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–44 05
Götz M, Anzt H (2018) Machine learning-aided numerical linear algebra: convolutional neural networks for the efficient preconditioner generation. In: Procs of ScalA’18: 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, WS at Supercomputing 2018, 11
Zhao Y, Li J, Liao C, Shen X (2018) Bridging the gap between deep learning and sparse matrix format selection. SIGPLAN Not 53(1):94–108
Cui H, Hirasawa S, Kobayashi H, Takizawa H (2018) A machine learning-based approach for selecting SpMV kernels and matrix storage formats. IEICE Trans Inf Syst E101.D(9):2307–2314
Nisa I, Siegel C, Rajam AS, Vishnu A, Sadayappan P (2018) Effective machine learning based format selection and performance modeling for SpMV on GPUs. EasyChair Preprint no. 388, EasyChair
Tiwari A, Laurenzano MA, Carrington L, Snavely A (2012) Modeling power and energy usage of HPC kernels. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD Forum, pp 990–998
Benatia A, Ji W, Wang Y, Shi F (2016) Machine learning approach for the predicting performance of SpMV on GPU. In: 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), pp 894–901
[-]