Mostrar el registro sencillo del ítem
dc.contributor.author | Maureira, Carlos | es_ES |
dc.contributor.author | Pinto, Hernán | es_ES |
dc.contributor.author | Yepes, V. | es_ES |
dc.contributor.author | García, José | es_ES |
dc.date.accessioned | 2021-11-05T14:07:22Z | |
dc.date.available | 2021-11-05T14:07:22Z | |
dc.date.issued | 2021 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176281 | |
dc.description.abstract | [EN] The Architecture, Engineering, and Construction (AEC) Industry is one of the most important productive sectors, hence also produce a high impact on the economic balances, societal stability, and global challenges in climate change. Regarding its adoption of technologies, applications and processes is also recognized by its status-quo, its slow innovation pace, and the conservative approaches. However, a new technological era - Industry 4.0 fueled by AI- is driving productive sectors in a highly pressurized global technological competition and sociopolitical landscape. In this paper, we develop an adaptive approach to mining text content in the literature research corpus related to the AEC and AI (AEC-AI) industries, in particular on its relation to technological processes and applications. We present a rst stage approach to an adaptive assessment of AI algorithms, to form an integrative AI platform in the AEC industry, the AEC-AI industry 4.0. At this stage, a macroscopic adaptive method is deployed to characterize ``Optimization,'' a key term in AEC-AI industry, using a mixed methodology incorporating machine learning and classical evaluation process. Our results show that effective use of metadata, constrained search queries, and domain knowledge allows getting a macroscopic assessment of the target concept. This allows the extraction of a high-level mapping and conceptual structure characterization of the literature corpus. The results are comparable, at this level, to classical methodologies for the literature review. In addition, our method is designed for an adaptive assessment to incorporate further stages. | es_ES |
dc.description.sponsorship | This work was supported by the CONICYT/FONDECYT/INICIACION under Grant 11180056 to Jose Garcia and the Spanish Ministry of Science and Innovation through the FEDER Funding under Project PID2020-117056RB-I00 to Victor Yepes. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Industries | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Machine learning algorithms | es_ES |
dc.subject | Ecosystems | es_ES |
dc.subject | Bibliometrics | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Architecture | es_ES |
dc.subject | Engineering | es_ES |
dc.subject | Construction | es_ES |
dc.subject | AEC | es_ES |
dc.subject | Optimization algorithms | es_ES |
dc.subject | Knowledge mapping and structure | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Towards an AEC-AI Industry Optimization Algorithmic Knowledge Mapping: An Adaptive Methodology for Macroscopic Conceptual Analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2021.3102215 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//11180056//Concurso Iniciación en Investigación/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PID2020-117056RB-I00//OPTIMIZACION HIBRIDA DEL CICLO DE VIDA DE PUENTES Y ESTRUCTURAS MIXTAS Y MODULARES DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Maureira, C.; Pinto, H.; Yepes, V.; García, J. (2021). Towards an AEC-AI Industry Optimization Algorithmic Knowledge Mapping: An Adaptive Methodology for Macroscopic Conceptual Analysis. IEEE Access. 9:110842-110879. https://doi.org/10.1109/ACCESS.2021.3102215 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/ACCESS.2021.3102215 | es_ES |
dc.description.upvformatpinicio | 110842 | es_ES |
dc.description.upvformatpfin | 110879 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\444675 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |