- -

Towards an AEC-AI Industry Optimization Algorithmic Knowledge Mapping: An Adaptive Methodology for Macroscopic Conceptual Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards an AEC-AI Industry Optimization Algorithmic Knowledge Mapping: An Adaptive Methodology for Macroscopic Conceptual Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Maureira, Carlos es_ES
dc.contributor.author Pinto, Hernán es_ES
dc.contributor.author Yepes, V. es_ES
dc.contributor.author García, José es_ES
dc.date.accessioned 2021-11-05T14:07:22Z
dc.date.available 2021-11-05T14:07:22Z
dc.date.issued 2021 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176281
dc.description.abstract [EN] The Architecture, Engineering, and Construction (AEC) Industry is one of the most important productive sectors, hence also produce a high impact on the economic balances, societal stability, and global challenges in climate change. Regarding its adoption of technologies, applications and processes is also recognized by its status-quo, its slow innovation pace, and the conservative approaches. However, a new technological era - Industry 4.0 fueled by AI- is driving productive sectors in a highly pressurized global technological competition and sociopolitical landscape. In this paper, we develop an adaptive approach to mining text content in the literature research corpus related to the AEC and AI (AEC-AI) industries, in particular on its relation to technological processes and applications. We present a rst stage approach to an adaptive assessment of AI algorithms, to form an integrative AI platform in the AEC industry, the AEC-AI industry 4.0. At this stage, a macroscopic adaptive method is deployed to characterize ``Optimization,'' a key term in AEC-AI industry, using a mixed methodology incorporating machine learning and classical evaluation process. Our results show that effective use of metadata, constrained search queries, and domain knowledge allows getting a macroscopic assessment of the target concept. This allows the extraction of a high-level mapping and conceptual structure characterization of the literature corpus. The results are comparable, at this level, to classical methodologies for the literature review. In addition, our method is designed for an adaptive assessment to incorporate further stages. es_ES
dc.description.sponsorship This work was supported by the CONICYT/FONDECYT/INICIACION under Grant 11180056 to Jose Garcia and the Spanish Ministry of Science and Innovation through the FEDER Funding under Project PID2020-117056RB-I00 to Victor Yepes. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Industries es_ES
dc.subject Artificial intelligence es_ES
dc.subject Optimization es_ES
dc.subject Machine learning algorithms es_ES
dc.subject Ecosystems es_ES
dc.subject Bibliometrics es_ES
dc.subject Machine learning es_ES
dc.subject Architecture es_ES
dc.subject Engineering es_ES
dc.subject Construction es_ES
dc.subject AEC es_ES
dc.subject Optimization algorithms es_ES
dc.subject Knowledge mapping and structure es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Towards an AEC-AI Industry Optimization Algorithmic Knowledge Mapping: An Adaptive Methodology for Macroscopic Conceptual Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2021.3102215 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11180056//Concurso Iniciación en Investigación/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PID2020-117056RB-I00//OPTIMIZACION HIBRIDA DEL CICLO DE VIDA DE PUENTES Y ESTRUCTURAS MIXTAS Y MODULARES DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Maureira, C.; Pinto, H.; Yepes, V.; García, J. (2021). Towards an AEC-AI Industry Optimization Algorithmic Knowledge Mapping: An Adaptive Methodology for Macroscopic Conceptual Analysis. IEEE Access. 9:110842-110879. https://doi.org/10.1109/ACCESS.2021.3102215 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2021.3102215 es_ES
dc.description.upvformatpinicio 110842 es_ES
dc.description.upvformatpfin 110879 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\444675 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem