- -

Programmable photonic circuits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Programmable photonic circuits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bogaerts, Wim es_ES
dc.contributor.author Pérez-López, Daniel es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.contributor.author Miller, David A. B. es_ES
dc.contributor.author Poon, Joyce es_ES
dc.contributor.author Englund, Dirk es_ES
dc.contributor.author Morichetti, Francesco es_ES
dc.contributor.author Melloni, Andrea es_ES
dc.date.accessioned 2021-11-05T14:07:37Z
dc.date.available 2021-11-05T14:07:37Z
dc.date.issued 2020-10-08 es_ES
dc.identifier.issn 1476-4687 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176295
dc.description.abstract [EN] The growing maturity of integrated photonic technology makes it possible to build increasingly large and complex photonic circuits on the surface of a chip. Today, most of these circuits are designed for a specific application, but the increase in complexity has introduced a generation of photonic circuits that can be programmed using software for a wide variety of functions through a mesh of on-chip waveguides, tunable beam couplers and optical phase shifters. Here we discuss the state of this emerging technology, including recent developments in photonic building blocks and circuit architectures, as well as electronic control and programming strategies. We cover possible applications in linear matrix operations, quantum information processing and microwave photonics, and examine how these generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Integrated optics es_ES
dc.subject Microwave photonics es_ES
dc.subject Quantum optics es_ES
dc.subject Silicon photonics es_ES
dc.subject Transformation optics es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Programmable photonic circuits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41586-020-2764-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/741415/EU/Universal microwave photonics programmable processor for seamlessly interfacing wireless and optical ICT systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//FJC2018-037347-I//AYUDA JUAN DE LA CIERVA FORMACION-PEREZ LOPEZ/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Bogaerts, W.; Pérez-López, D.; Capmany Francoy, J.; Miller, DAB.; Poon, J.; Englund, D.; Morichetti, F.... (2020). Programmable photonic circuits. Nature. 586(7828):207-216. https://doi.org/10.1038/s41586-020-2764-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41586-020-2764-0 es_ES
dc.description.upvformatpinicio 207 es_ES
dc.description.upvformatpfin 216 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 586 es_ES
dc.description.issue 7828 es_ES
dc.identifier.pmid 33028997 es_ES
dc.relation.pasarela S\434349 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Chen, X. et al. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 106, 2101–2116 (2018). es_ES
dc.description.references Smit, M., Williams, K. & van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 4, 050901 (2019). es_ES
dc.description.references Capmany, J. & Perez, D. Programmable Integrated Photonics (Oxford Univ. Press, 2020). The first book on the subject of programmable photonics gives a detailed overview of the fundamental principles, architectures and potential applications. es_ES
dc.description.references Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019). es_ES
dc.description.references Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015). es_ES
dc.description.references Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017). es_ES
dc.description.references Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018). One of the largest-scale demonstrations of a programmable photonic circuit, using a silicon photonics forward-only mesh that maps 26 input modes onto 26 output modes, for use in deep learning and quantum information processing. es_ES
dc.description.references Miller, D. A. B. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013). This foundational paper in the field of programmable photonics is the first to bring together waveguide meshes with self-configuration algorithms that require no active computation, including the concept of the self-aligning beam coupler. es_ES
dc.description.references Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015). es_ES
dc.description.references Harris, N. C. et al. Large-scale quantum photonic circuits in silicon. Nanophotonics 5, 456–468 (2016). es_ES
dc.description.references Notaros, J. et al. Programmable dispersion on a photonic integrated circuit for classical and quantum applications. Opt. Express 25, 21275–21285 (2017). es_ES
dc.description.references Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. An optimal design for universal multiport interferometers. Optica 12, 1460–1465 (2016). es_ES
dc.description.references Perez-Lopez, D. Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. IEEE J. Sel. Top. Quantum Electron. 26, 8301312 (2020). es_ES
dc.description.references Ribeiro, A., Ruocco, A., Vanacker, L. & Bogaerts, W. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016). es_ES
dc.description.references Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017). es_ES
dc.description.references Mennea, P. L. et al. Modular linear optical circuits. Optica 5, 1087–1090 (2018). es_ES
dc.description.references Taballione, C. et al. 8×8 programmable quantum photonic processor based on silicon nitride waveguides. In Frontiers in Optics, JTu3A.58 (Optical Society of America, 2018). A demonstration of an 8 × 8 forward-only programmable linear circuit in silicon nitride that benefits from the notably low optical losses of this material and is therefore attractive for linear quantum operations on single photons. es_ES
dc.description.references Perez, D. et al. Silicon photonics rectangular universal interferometer. Laser Photonics Rev. 11, 1700219 (2017). es_ES
dc.description.references Xie, Y. et al. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics 7, 421–454 (2017). A comprehensive overview of the various ways in which a programmable photonic circuit can be used to process microwave signals, and on how this type of circuit is transitioning from custom ASPICs to generic programmable PICs. es_ES
dc.description.references Hall, T. J. & Hasan, M. Universal discrete Fourier optics RF photonic integrated circuit architecture. Opt. Express 24, 7600–7610 (2016). es_ES
dc.description.references Dyakonov, I. V. et al. Reconfigurable photonics on a glass chip. Phys. Rev. Appl. 10, 044048 (2018). es_ES
dc.description.references Shokraneh, F., Geoffroy-Gagnon, S., Nezami, M. S. & Liboiron-Ladouceur, O. A single layer neural network implemented by a 4×4 MZI-based optical processor. IEEE Photonics J. 11, 4501612 (2019). es_ES
dc.description.references Lu, L., Zhou, L. & Chen, J. Programmable SCOW mesh silicon photonic processor for linear unitary operator. Micromachines 10, 646 (2019). es_ES
dc.description.references Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018). es_ES
dc.description.references Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018). es_ES
dc.description.references Schaeff, C., Polster, R., Huber, M., Ramelow, S. & Zeilinger, A. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2, 523–529 (2015). es_ES
dc.description.references Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012). es_ES
dc.description.references Miller, D. A. B. Waves, modes, communications, and optics: a tutorial. Adv. Opt. Photonics 11, 679 (2019). es_ES
dc.description.references Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013). es_ES
dc.description.references Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015). es_ES
dc.description.references Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017). Early demonstration of a forward-only programmable mesh used to unmix different modes in a waveguide, implementing integrated transparent detectors that measure the light intensity in the waveguide without inducing additional optical loss. es_ES
dc.description.references Pai, S. et al. Parallel programming of an arbitrary feedforward photonic network. IEEE J. Sel. Top. Quantum Electron. 25, 6100813 (2020). es_ES
dc.description.references Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994). es_ES
dc.description.references Wang, M., Alves, A. R., Xing, Y. & Bogaerts, W. Tolerant, broadband tunable 2×2 coupler circuit. Opt. Express 28, 5555–5566 (2020). es_ES
dc.description.references Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P. & Capmany, J. Integrated photonic tunable basic units using dual-drive directional couplers. Opt. Express 27, 38071 (2019). es_ES
dc.description.references Choutagunta, K., Roberts, I., Miller, D. A. B. & Kahn, J. M. Adapting Mach–Zehnder mesh equalizers in direct-detection mode-division-multiplexed links. J. Light. Technol. 38, 723–735 (2020). es_ES
dc.description.references Miller, D. A. B. Analyzing and generating multimode optical fields using self-configuring networks. Optica 7, 794–801 (2020). es_ES
dc.description.references Morizur, J.-F. et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. Am. A 27, 2524 (2010). es_ES
dc.description.references Labroille, G. et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 22, 15599–15607 (2014). es_ES
dc.description.references Tanomura, R., Tang, R., Ghosh, S., Tanemura, T. & Nakano, T. Robust integrated optical unitary converter using multiport directional couplers. J. Light. Technol. 38, 60–66 (2020). es_ES
dc.description.references Miller, D. A. B. Setting up meshes of interferometers – reversed local light interference method. Opt. Express 25, 29233 (2017). es_ES
dc.description.references Li, H. W. et al. Calibration and high fidelity measurement of a quantum photonic chip. New J. Phys. 15, 063017 (2013). es_ES
dc.description.references Cong, G. et al. Arbitrary reconfiguration of universal silicon photonic circuits by bacteria foraging algorithm to achieve reconfigurable photonic digital-to-analog conversion. Opt. Express 27, 24914 (2019). es_ES
dc.description.references Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 1–9 (2017). The first experimental demonstration of a recirculating waveguide mesh with seven unit cells that can be programmed to perform more than a hundred different functions. es_ES
dc.description.references Pérez, D., Gasulla, I. & Capmany, J. Field-programmable photonic arrays. Opt. Express 26, 27265 (2018). es_ES
dc.description.references Rahim, A., Spuesens, T., Baets, R. & Bogaerts, W. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE 106, 2313–2330 (2018). es_ES
dc.description.references Munoz, P. et al. Foundry developments toward silicon nitride photonics from visible to the mid-infrared. IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019). es_ES
dc.description.references Teng, M. et al. Miniaturized silicon photonics devices for integrated optical signal processors. J. Light. Technol. 38, 6–17 (2020). es_ES
dc.description.references Sacher, W. D. et al. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices. Proc. IEEE 106, 2232–2245 (2018). es_ES
dc.description.references Baudot, C. et al. Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials. In 2017 IEEE Int. Electron Devices Meeting, 765–768 (IEEE, 2017). es_ES
dc.description.references Fahrenkopf, N. M. et al. The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25, 8201406 (2019). es_ES
dc.description.references Chiles, J. et al. Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss. APL Photonics 2, 116101 (2017). es_ES
dc.description.references Van Campenhout, J., Green, W. M. J., Assefa, S. & Vlasov, Y. A. Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices. Opt. Lett. 35, 1013–1015 (2010). es_ES
dc.description.references Masood, A. et al. Comparison of heater architectures for thermal control of silicon photonic circuits. In Proc. 10th Int. Conference on Group IV Photonics 83–84 (IEEE, 2013). es_ES
dc.description.references Milanizadeh, M., Aguiar, D., Melloni, A. & Morichetti, F. Canceling thermal cross-talk effects in photonic integrated circuits. J. Light. Technol. 37, 1325–1332 (2019). es_ES
dc.description.references Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987). es_ES
dc.description.references Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010); corrigendum 4, 660 (2010). es_ES
dc.description.references Memon, F. A. et al. Silicon oxycarbide platform for integrated photonics. J. Light. Technol. 38, 784–791 (2020). es_ES
dc.description.references Jin, W., Polcawich, R. G., Morton, P. A. & Bowers, J. E. Piezoelectrically tuned silicon nitride ring resonator. Opt. Express 26, 3174–3187 (2018). es_ES
dc.description.references Hosseini, N. et al. Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt. Express 23, 14018 (2015). es_ES
dc.description.references De Cort, W., Beeckman, J., Claes, T., Neyts, K. & Baets, R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Opt. Lett. 36, 3876–3878 (2011). es_ES
dc.description.references Xing, Y. et al. Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration. IEEE Photonics Technol. Lett. 27, 1269–1272 (2015). es_ES
dc.description.references Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019). es_ES
dc.description.references Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380 (2019). es_ES
dc.description.references Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9, 3444 (2018). es_ES
dc.description.references Leuthold, J. et al. Silicon-organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013). es_ES
dc.description.references Errando-Herranz, C. et al. MEMS for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 8200916 (2020). es_ES
dc.description.references Quack, N. et al. MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron. 56, 8400210 (2020). es_ES
dc.description.references Hoessbacher, C. et al. The plasmonic memristor: a latching optical switch. Optica 1, 198 (2014). es_ES
dc.description.references Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015). es_ES
dc.description.references Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017). es_ES
dc.description.references Morichetti, F. et al. Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014). es_ES
dc.description.references Jayatilleka, H., Shoman, H., Chrostowski, L. & Shekhar, S. Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica 6, 84–91 (2019). es_ES
dc.description.references Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129 (2014). es_ES
dc.description.references Annoni, A. et al. Automated routing and control of silicon photonic switch fabrics. IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016). es_ES
dc.description.references Dumais, P. et al. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Light. Technol. 36, 233–238 (2018). es_ES
dc.description.references Chen, H., Luo, X. & Poon, A. W. Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p–i–n diode embedded silicon microring resonator. Appl. Phys. Lett. 95, 171111 (2009). es_ES
dc.description.references Ribeiro, A. & Bogaerts, W. Digitally controlled multiplexed silicon photonics phase shifter using heaters with integrated diodes. Opt. Express 25, 29778 (2017). es_ES
dc.description.references Zimmermann, L. et al. BiCMOS silicon photonics platform. In Optical Fiber Communication Conference Th4E-5 (Optical Society of America, 2015). es_ES
dc.description.references Orcutt, J. S. et al. Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19, 2335–2346 (2011). es_ES
dc.description.references Stojanović, V. et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes. Opt. Express 26, 13106 (2018). es_ES
dc.description.references Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016). es_ES
dc.description.references Patterson, D., De Sousa, I. & Archard, L.-M. The future of packaging with silicon photonics. Chip Scale Rev. 21, 1–10 (2017). es_ES
dc.description.references Ribeiro, A., Declercq, S., Khan, U., Wang, M. & Van Iseghem, L. Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron. 26, 6100708 (2020). es_ES
dc.description.references Pantouvaki, M. et al. Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform. J. Light. Technol. 35, 631–638 (2017). es_ES
dc.description.references Chen, H. et al. 100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors. J. Light. Technol. 35, 722–726 (2017). es_ES
dc.description.references Pérez, D., Gasulla, I. & Capmany, J. Toward programmable microwave photonics processors. J. Light. Technol. 36, 519–532 (2018). es_ES
dc.description.references Zoldak, M., Halmo, L., Turkiewicz, J. P., Schumann, S. & Henker, R. Packaging of ultra-high speed optical fiber data interconnects. In Opt. Fibers and Their Applications 2017 10325, 103250R (International Society for Optics and Photonics, 2017). es_ES
dc.description.references Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2014). es_ES
dc.description.references Ramirez, J. M. et al. III–V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 6100213 (2020). es_ES
dc.description.references Liu, A. Y. & Bowers, J. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018). es_ES
dc.description.references Zhang, J. et al. Transfer-printing-based integration of a III–V-on-silicon distributed feedback laser. Opt. Express 26, 8821–8830 (2018). es_ES
dc.description.references Thiessen, T. et al. Back-side-on-BOX heterogeneously integrated III–V-on-silicon O-band distributed feedback lasers. J. Light. Technol. 38, 3000–3006 (2020). es_ES
dc.description.references López, A., Perez, D., DasMahapatra, P. & Capmany, J. Auto-routing algorithm for field-programmable photonic gate arrays. Opt. Express 28, 737–752 (2020). es_ES
dc.description.references Chen, X., Stroobant, P., Pickavet, M. & Bogaerts, W. Graph representations for programmable photonic circuits. J. Light. Technol. https://ieeexplore.ieee.org/document/9056549 (2020). es_ES
dc.description.references Zand, I. & Bogaerts, W. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes. Photon. Res. 8, 211–218 (2020). es_ES
dc.description.references Bogaerts, W. & Rahim, A. Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. 26, 1–17 (2020). A simple techno-economic analysis of how general-purpose programmable photonic circuits can reduce the cost of prototyping photonics applications. es_ES
dc.description.references Dubrovsky, M., Ball, M. & Penkovsky, B. Optical proof of work. Preprint at https://arxiv.org/abs/1911.05193 (2019). es_ES
dc.description.references Paquot, Y., Schroeder, J., Pelusi, M. D. & Eggleton, B. J. All-optical hash code generation and verification for low latency communications. Opt. Express 21, 23873 (2013). es_ES
dc.description.references Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019). es_ES
dc.description.references Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP-InGaAsP. J. Light. Technol. 29, 1611–1619 (2011). es_ES
dc.description.references Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015). es_ES
dc.description.references Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475 (2011). es_ES
dc.description.references Liu, L. et al. Photonic measurement of microwave frequency using a silicon microdisk resonator. Opt. Commun. 335, 266–270 (2015). es_ES
dc.description.references Perez-Lopez, D., Sanchez, E. & Capmany, J. Programmable true-time delay lines using integrated waveguide meshes. J. Light. Technol. 36, 4591–4601 2018. es_ES
dc.description.references Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 0600311 (2016). es_ES
dc.description.references Behroozpour, B., Sandborn, P. A. M., Wu, M. C. & Boser, B. E. Lidar system architectures and circuits. IEEE Commun. Mag. 55, 135–142 (2017). es_ES
dc.description.references Heck, M. J. R. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93–107 (2017). es_ES
dc.description.references Van Acoleyen, K. Efficient light collection and direction-of-arrival estimation using a photonic integrated circuit. Photonics 24, 933–935 (2012). es_ES
dc.description.references Miller, D. A. B. Establishing optimal wave communication channels automatically. J. Light. Technol. 31, 3987–3994 (2013). es_ES
dc.description.references Luan, E., Shoman, H., Ratner, D. M., Cheung, K. C. & Chrostowski, L. Silicon photonic biosensors using label-free detection. Sensors 18, 3519 (2018). es_ES
dc.description.references Subramanian, A. Z. et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photon. Res. 3, B47–B59 (2015). es_ES
dc.description.references Li, Y. et al. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology. Opt. Express 26, 3638 (2018). es_ES
dc.description.references Trimberger, S. M. Three ages of FPGAs: a retrospective on the first thirty years of FPGA technology. Proc. IEEE 103, 318–331 (2015). es_ES
dc.description.references Mohomed, I. & Dutta, P. The age of DIY and dawn of the maker movement. Mob. Comput. Commun. Rev. 18, 41–43 (2015). es_ES
dc.description.references Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 7, 79 (2018). es_ES
dc.description.references Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). es_ES
dc.description.references Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017). es_ES
dc.description.references Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. npj Quantum Inf. 5, 60 (2019). es_ES
dc.description.references Miatto, F. M., Epping, M. & Lütkenhaus, N. Hamiltonians for one-way quantum repeaters. Quantum 2, 75 (2018). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem