- -

Radiofrequency ablation combined with conductive fluid-based dopants (saline normal and colloidal gold): computer modeling and ex vivo experiments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radiofrequency ablation combined with conductive fluid-based dopants (saline normal and colloidal gold): computer modeling and ex vivo experiments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castro-López, Dora Luz es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.contributor.author Romero-Méndez, Ricardo es_ES
dc.date.accessioned 2021-11-05T14:08:04Z
dc.date.available 2021-11-05T14:08:04Z
dc.date.issued 2021-01-06 es_ES
dc.identifier.issn 1475-925X es_ES
dc.identifier.uri http://hdl.handle.net/10251/176313
dc.description.abstract [EN] Background: The volume of the coagulation zones created during radiofrequency ablation (RFA) is limited by the appearance of roll-off. Doping the tissue with conductive fluids, e.g., gold nanoparticles (AuNPs) could enlarge these zones by delaying roll-off. Our goal was to characterize the electrical conductivity of a substrate doped with AuNPs in a computer modeling study and ex vivo experiments to investigate their effect on coagulation zone volumes. Methods: The electrical conductivity of substrates doped with normal saline or AuNPs was assessed experimentally on agar phantoms. The computer models, built and solved on COMSOL Multiphysics, consisted of a cylindrical domain mimicking liver tissue and a spherical domain mimicking a doped zone with 2, 3 and 4 cm diameters. Ex vivo experiments were conducted on bovine liver fragments under three different conditions: non-doped tissue (ND Group), 2 mL of 0.9% NaCl (NaCl Group), and 2 mL of AuNPs 0.1 wt% (AuNPs Group). Results: The theoretical analysis showed that adding normal saline or colloidal gold in concentrations lower than 10% only modifies the electrical conductivity of the doped substrate with practically no change in the thermal characteristics. The computer results showed a relationship between doped zone size and electrode length regarding the created coagulation zone. There was good agreement between the ex vivo and computational results in terms of transverse diameter of the coagulation zone. Conclusions: Both the computer and ex vivo experiments showed that doping with AuNPs can enlarge the coagulation zone, especially the transverse diameter and hence enhance sphericity. es_ES
dc.description.sponsorship This work was supported by the National Council of Science and Technology (CONACYT, Mexico) through a scholarship grant to Dora Luz Castro-Lopez, CVU Registration No. 446604; and by the Spanish Ministerio de Ciencia, Innovacion y Universidades under the "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad", Grant No "RTI2018-094357-B-C21" es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BioMedical Engineering OnLine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gold nanoparticles es_ES
dc.subject Nanofluid es_ES
dc.subject Saline solution es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Radiofrequency ablation combined with conductive fluid-based dopants (saline normal and colloidal gold): computer modeling and ex vivo experiments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12938-020-00842-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//446604/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Castro-López, DL.; Berjano, E.; Romero-Méndez, R. (2021). Radiofrequency ablation combined with conductive fluid-based dopants (saline normal and colloidal gold): computer modeling and ex vivo experiments. BioMedical Engineering OnLine. 20:1-20. https://doi.org/10.1186/s12938-020-00842-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12938-020-00842-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.identifier.pmid 33407532 es_ES
dc.identifier.pmcid PMC7788784 es_ES
dc.relation.pasarela S\425311 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Zhu F, Rhim H. Thermal ablation for hepatocellular carcinoma: what’s new in 2019. Chin Clin Oncol. 2019;8(6):58. https://doi.org/10.21037/cco.2019.11.03. es_ES
dc.description.references Haemmerich D. Biophysics of radiofrequency ablation. Crit Rev Biomed Eng. 2010;38(1):53–63. https://doi.org/10.1615/critrevbiomedeng.v38.i1.50 (PMID: 21175403). es_ES
dc.description.references Haines DE. Letter by Haines regarding article, “Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue.” Circ Arrhythm Electrophysiol. 2011;4(5):e67. https://doi.org/10.1161/CIRCEP.111.965459 (author reply e68). es_ES
dc.description.references Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, Chen MH, Choi BI, de Baère T, Dodd GD 3rd, Dupuy DE, Gervais DA, Gianfelice D, Gillams AR, Lee FT Jr, Leen E, Lencioni R, Littrup PJ, Livraghi T, Lu DS, McGahan JP, Meloni MF, Nikolic B, Pereira PL, Liang P, Rhim H, Rose SC, Salem R, Sofocleous CT, Solomon SB, Soulen MC, Tanaka M, Vogl TJ, Wood BJ, Goldberg SN, International Working Group on Image-guided Tumor Ablation, Technology Assessment Committee of the Society of Interventional Radiology, Standard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe. Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. Radiology. 2014;273(1):241–60. https://doi.org/10.1148/radiol.14132958. es_ES
dc.description.references Trujillo M, Alba J, Berjano E. Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. Int J Hyperthermia. 2012;28(1):62–8. es_ES
dc.description.references Jiang XY, Zhang TQ, Li G, Gu YK, Gao F, Yao W, Zhang YY, Huang JH. Increasing radiofrequency ablation volumes with the use of internally cooled electrodes and injected hydrochloric acid in ex vivo bovine livers. Int J Hyperthermia. 2018;35(1):37–43. es_ES
dc.description.references Bruners P, Müller H, Günther RW, Schmitz-Rode T, Mahnken AH. Fluid-modulated bipolar radiofrequency ablation: an ex-vivo evaluation study. Acta Radiol. 2008;49(3):258–66. es_ES
dc.description.references Ishikawa T, Kubota T, Horigome R, Kimura N, Honda H, Iwanaga A, Seki K, Honma T, Yoshida T. Radiofrequency ablation during continuous saline infusion can extend ablation margins. World J Gastroenterol. 2013;19(8):1278–82. https://doi.org/10.3748/wjg.v19.i8.1278. es_ES
dc.description.references Bennett D. NaCl doping and the conductivity of agar phantoms. Mater Sci Eng, C. 2011;31:494–8. es_ES
dc.description.references da Fonseca RD, Monteiro MS, Marques MP, Motta BC, Guimaraes GDA, do Santos PR, Jacobi RP, Rosa SSRF. Roll-off displacement in ex vivo experiments of RF ablation with refrigerated saline solution and refrigerated deionized water. IEEE Trans Biomed Eng. 2019;66(5):1390–401. https://doi.org/10.1109/TBME.2018.2873141. es_ES
dc.description.references Trujillo M, Berjano E. Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. Int J Hyperthermia. 2013;29(6):590–7. es_ES
dc.description.references Qadri AM, Chia NJY, Ooi EH. Effects of saline volume on lesion formation during saline-infused radiofrequency ablation. Appl Math Model. 2017;43:360–71. es_ES
dc.description.references Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev. 2010;62(3):339–45. es_ES
dc.description.references Glazer ES, Curley SA. Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes. Ther Deliv. 2011;2(10):1325–30. https://doi.org/10.4155/tde.11.102. es_ES
dc.description.references Merkle EM, Goldberg SN, Boll DT, Shankaranarayanan A, Boaz T, Jacobs GH, Wendt M, Lewin JS. Effects of superparamagnetic iron oxide on radio-frequency-induced temperature distribution: in vitro measurements in polyacrylamide phantoms and in vivo results in a rabbit liver model. Radiology. 1999;212(2):459–66. https://doi.org/10.1148/radiology.212.2.r99au44459. es_ES
dc.description.references Pedro RN, Thekke-Adiyat T, Goel R, Shenoi M, Slaton J, Schmechel S, Bischof J, Anderson JK. Use of tumor necrosis factor-alpha-coated gold nanoparticles to enhance radiofrequency ablation in a translational model of renal tumors. Urology. 2010;76(2):494–8. https://doi.org/10.1016/j.urology.2010.01.085. es_ES
dc.description.references Wu Q, Zhang H, Chen M, Zhang Y, Huang J, Xu Z, Wang W. Preparation of carbon-coated iron nanofluid and its application in radiofrequency ablation. J Biomed Mater Res B Appl Biomater. 2015;103(4):908–14. https://doi.org/10.1002/jbm.b.33275. es_ES
dc.description.references Jelbuldina M, Korganbayev S, Korobeinyk AV, Inglezakis VJ, Tosi D. Temperature profiling of ex-vivo organs during ferromagnetic nanoparticles-enhanced radiofrequency ablation by Fiber Bragg Grating Arrays. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:1–4. https://doi.org/10.1109/EMBC.2018.8513227. es_ES
dc.description.references Khalafalla MAH, Mesli A, Widattallah HM, Sellai A, Al-harthi S, Al-Lawati HAJ, Suliman FO. Size-dependent conductivity dispersion of gold nanoparticle colloids in a microchip: contactless measurements. J Nanoparticle Res. 2014;16:2546. es_ES
dc.description.references Ewertowska E, Quesada R, Radosevic A, Andaluz A, Moll X, Arnas FG, Berjano E, Burdío F, Trujillo M. A clinically oriented computer model for radiofrequency ablation of hepatic tissue with internally cooled wet electrode. Int J Hyperthermia. 2019;35(1):194–204. es_ES
dc.description.references Raoof M, Corr SJ, Zhu C, Cisneros BT, Kaluarachchi WD, Phounsavath S, Wilson LJ, Curley SA. Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomedicine. 2014;10(6):1121–30. es_ES
dc.description.references Xie H, Wang J, Xi T, Liu Y. Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys. 2002;23:571–80. es_ES
dc.description.references Yull Park J, Young Park C, Min Lee J. Estimation of saline-mixed tissue conductivity and ablation lesion size. Comput Biol Med. 2013;43(5):504–12. es_ES
dc.description.references Abdelhalim MAK, Mady MM, Ghannam MM. Dielectric constant, electrical conductivity and relaxation time measurements of different gold nanoparticle sizes. Int J Phys Sci. 2011;6(23):5487–91. es_ES
dc.description.references Zorbas G, Samaras T. Parametric study of radiofrequency ablation in the clinical practice with the use of two-compartment numerical models. Electromagn Biol Med. 2013;32(2):236–43. es_ES
dc.description.references Zhang B, Moser MA, Zhang EM, Luo Y, Zhang H, Zhang W. Study of the relationship between the target tissue necrosis volume and the target tissue size in liver tumours using two-compartment finite element RFA modelling. Int J Hyperthermia. 2014;30(8):593–602. es_ES
dc.description.references Francica G. Needle track seeding after radiofrequency ablation for hepatocellular carcinoma: prevalence, impact, and management challenge. J Hepatocell Carcinoma. 2017;20(4):23–7. es_ES
dc.description.references Ji Q, Xu Z, Liu G, Lin M, Kuang M, Lu M. Preinjected fluids do not benefit microwave ablation as those in radiofrequency ablation. Acad Radiol. 2011;18(9):1151–8. es_ES
dc.description.references Goldberg SN, Stein MC, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME. Percutaneous radiofrequency tissue ablation: optimization of pulsed-radiofrequency technique to increase coagulation necrosis. J Vasc Interv Radiol. 1999;10(7):907–16. es_ES
dc.description.references Solazzo SA, Ahmed M, Liu Z, Hines-Peralta AU, Goldberg SN. High-power generator for radiofrequency ablation: larger electrodes and pulsing algorithms in bovine ex vivo and porcine in vivo settings. Radiology. 2007;242(3):743–50. es_ES
dc.description.references Goldberg SN, Ahmed M, Gazelle GS, Kruskal JB, Huertas JC, Halpern EF, Oliver BS, Lenkinski RE. Radio-frequency thermal ablation with NaCl solution injection: effect of electrical conductivity on tissue heating and coagulation-phantom and porcine liver study. Radiology. 2001;219(1):157–65. es_ES
dc.description.references Trujillo M, Bon J, Berjano E. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity. Int J Hyperthermia. 2017;33(6):624–34. es_ES
dc.description.references Gillams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005;28(4):476–80. es_ES
dc.description.references Takata AN, Zaneveld L, Richter W. Laser-induced thermal damage of skin (Rep. SAM-TR-77–38). USAF School Aerospace Medicine, Brooks Air Force Base, Texas. 1977: 22−3. es_ES
dc.description.references Burdío F, Berjano E, Millan O, Grande L, Poves I, Silva C, de la Fuente MD, Mojal S. CT mapping of saline distribution after infusion of saline into the liver in an ex vivo animal model. How much tissue is actually infused in an image-guided procedure? Phys Med. 2013;29(2):188–95. es_ES
dc.description.references Abraham JP, Sparrow EM. A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. Int J Heat Mass Transfer. 2007;50:2537–44. es_ES
dc.description.references Pätz T, Kröger T, Preusser T, Simulation of radiofrequency ablation including water evaporation, IFMBE Proceedings, 25/IV:1287–90, 2009. es_ES
dc.description.references https://www.engineeringtoolbox.com/specific-heat-capacity-water-d_660.html (accessed March 15, 2020). es_ES
dc.description.references Carson JK. Review of effective thermal conductivity models for foods. Int J Refrigeration. 2006;29(6):958–67. es_ES
dc.description.references Cruz RCD, Reinshagen J, Oberacker R, Segadães AM. Electrical conductivity and stability of concentrated aqueous alumina suspensions. J Colloid Interface Sci. 2005;286:579–88. es_ES
dc.description.references Trujillo M, Bon J, Rivera MJ, Burdio F, Berjano E. Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. Int J Hyperthermia. 2016;32:931–9. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem