- -

Integral representation of product factorable bilinear operators and summability of bilinear maps on C(K)-spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Integral representation of product factorable bilinear operators and summability of bilinear maps on C(K)-spaces

Show full item record

Erdogan, E.; Sánchez Pérez, EA. (2020). Integral representation of product factorable bilinear operators and summability of bilinear maps on C(K)-spaces. Journal of Mathematical Analysis and Applications. 483(2):1-25. https://doi.org/10.1016/j.jmaa.2019.123629

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176335

Files in this item

Item Metadata

Title: Integral representation of product factorable bilinear operators and summability of bilinear maps on C(K)-spaces
Author: Erdogan, Ezgi Sánchez Pérez, Enrique Alfonso
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] We present a constructive technique to represent classes of bilinear operators that allow a factorization through a bilinear product, providing a general version of the well-known characterization of integral bilinear ...[+]
Subjects: C(K)-spaces , Bilinear operators , Orthogonally additive polynomials , Surnmability , Factorization , Pietsch integral
Copyrigths: Reserva de todos los derechos
Source:
Journal of Mathematical Analysis and Applications. (issn: 0022-247X )
DOI: 10.1016/j.jmaa.2019.123629
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jmaa.2019.123629
Project ID:
info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD//MTM2016-77054-C2-1-P//ANÁLISIS NO LINEAL, INTEGRACIÓN VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACIÓN/
Thanks:
The second author was supported by Ministerio de Ciencia, Innovation y Universidades, Agencia Estatal de Investigation and FEDER, Grant MTM2016-77054-C2-1-P
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record