- -

Weak Sequential Convergence in Bounded Finitely Additive Measures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Weak Sequential Convergence in Bounded Finitely Additive Measures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López Alfonso, Salvador es_ES
dc.contributor.author López Pellicer, Manuel es_ES
dc.date.accessioned 2021-11-05T14:09:03Z
dc.date.available 2021-11-05T14:09:03Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 2305-221X es_ES
dc.identifier.uri http://hdl.handle.net/10251/176355
dc.description.abstract [EN] It is well known that a ¿-algebra ¿ of subsets of a set ¿ verifies both Nikodým property and property (G) for the Banach space ba(¿) of bounded finitely additive measures defined in ¿. A classic result of Valdivia stating that if a ¿-algebra ¿ is covered by an increasing sequence (¿n:n¿N) of subsets, there is p¿N such that ¿p is a Nikodým set for ba(¿) was complemented in Ferrando et al. (2020) proving that there exists p¿N such that ¿p is both a Nikodým and a Grothendieck set for ba(¿). Valdivia result was the first step to get that if (¿¿:¿¿N<¿) is a web in ¿ there exists a chain (¿n:n¿N) in N<¿ such that each ¿¿n, n¿N, is a Nikodým set for ba(¿). In this paper, we develop several properties in Banach spaces that enables us to complement the preceding web result extending the main result in Ferrando et al. (2020) proving that for each web (¿¿:¿¿N<¿) in a ¿-algebra ¿ there exists a chain (¿n:n¿N) in N<¿ such that each ¿¿n, n¿N, is both a Nikodým and a Grothendieck set for ba(¿). As an application we extend some results of classic Banach space theory es_ES
dc.description.sponsorship The second author is supported by Grant PGC2018-094431-B-I00 of the Ministry of Science, Innovation and Universities of Spain. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Vietnam Journal of Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Algebras and sigma-algebras of sets es_ES
dc.subject Bounded finitely additive measures es_ES
dc.subject Grothendieck es_ES
dc.subject Nikodym and Rainwater sets es_ES
dc.subject Pointwise and weak sequential convergence es_ES
dc.subject Web properties es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.title Weak Sequential Convergence in Bounded Finitely Additive Measures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10013-020-00387-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094431-B-I00/ES/ESPACIOS DE FUNCIONES: FUNCIONES ANALITICAS Y OPERADORES DE COMPOSICION. RENORMAMIENTOS Y TOPOLOGIA DESCRIPTIVA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.description.bibliographicCitation López Alfonso, S.; López Pellicer, M. (2020). Weak Sequential Convergence in Bounded Finitely Additive Measures. Vietnam Journal of Mathematics. 48(2):379-389. https://doi.org/10.1007/s10013-020-00387-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10013-020-00387-2 es_ES
dc.description.upvformatpinicio 379 es_ES
dc.description.upvformatpfin 389 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 48 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\404372 es_ES
dc.contributor.funder MINISTERIO DE CIENCIA, INNOVACIÓN y UNIVERSIDADES es_ES
dc.description.references Arens, R.F., Kelley, J.L.: Characterizations of the space of continuous functions over a compact Hausdorff space. Trans. Am. Math. Soc. 62, 499–508 (1947) es_ES
dc.description.references Diestel, J., Faires, B., Huff, R.: Convergence and boundedness of measures in non σ-complete algebras. Preprint (1976) es_ES
dc.description.references Diestel, J., Uhl, J.J.: Vector Measures. Mathematical Surveys and Monographs, vol. 15. American Mathematical Society, Providence (1977) es_ES
dc.description.references Dunford, N., Schwartz, J.T.: Linear Operators. Part I: General Theory. Wiley, New Jersey (1988) es_ES
dc.description.references Fernández, J., Hui, S., Shapiro, H.: Unimodular functions and uniform boundedness. Publ. Mat. 33, 139–146 (1989) es_ES
dc.description.references Ferrando, J.C., Ka̧kol, J., López-Pellicer, M.: On spaces Cb(X) weakly K-analytic. Math. Nachr. 290, 2612–2618 (2017) es_ES
dc.description.references Ferrando, J.C., López-Alfonso, S., López-Pellicer, M.: On Nikodým and Rainwater sets for $ba(\mathcal {R})$ and a problem of M. Valdivia. Filomat 33, 2409–2416 (2019) es_ES
dc.description.references Ferrando, J.C., López-Alfonso, S., López-Pellicer, M.: On the Grothendieck property (submited) (2020) es_ES
dc.description.references Ferrando, J.C., López-Pellicer, M., Sánchez Ruiz, L.M.: Metrizable Barrelled Spaces. Pitman Research Notes in Mathematics Series, vol. 332. Longman, Harlow (1995) es_ES
dc.description.references Ferrando, J.C., Sánchez Ruiz, L.M.: A survey on recent advances on the Nikodým boundedness theorem and spaces of simple functions. Rocky Mount. J. Math. 34, 139–172 (2004) es_ES
dc.description.references Fonf, V.P.: On exposed and smooth points of convex bodies in Banach spaces. Bull. Lond. Math. Soc. 28, 51–58 (1996) es_ES
dc.description.references Ka̧kol, J., López-Pellicer, M.: On Valdivia strong version of Nikodým boundedness property. J. Math. Anal. Appl. 446, 1–17 (2017) es_ES
dc.description.references López-Alfonso, S., Mas, J., Moll, S.: Nikodým boundedness property and webs in σ-algebras. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110, 711–722 (2016) es_ES
dc.description.references López-Alfonso, S.: On Schachermayer and Valdivia results in algebras of Jordan measurable sets. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110, 799–808 (2016) es_ES
dc.description.references López-Pellicer, M.: Webs and bounded finitely additive measures. J. Math. Anal. Appl. 210, 257–267 (1997) es_ES
dc.description.references Nygaard, O.: A strong uniform boundedness principle in Banach spaces. Proc. Am. Math. Soc. 129, 861–863 (2001) es_ES
dc.description.references Nygaard, O.: Thick sets in Banach spaces and their properties. Quaest. Math. 29, 50–72 (2006) es_ES
dc.description.references Plebanek, G., Sobota, D.: Countable tightness in the spaces of regular probability measures. Fund. Math. 229, 159–170 (2015) es_ES
dc.description.references Rainwater, J.: Short notes: Weak convergence of bounded sequences. Proc. Am. Math. Soc. 14, 999–999 (1963) es_ES
dc.description.references Schachermayer, W.: On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Diss. Math. (Rozprawy Mat.) 214, 1–33 (1982) es_ES
dc.description.references Simons, S.: A convergence theorem with boundary. Pac. J. Math. 40, 703–708 (1972) es_ES
dc.description.references Sobota, D., Zdomskyy, L.: The Nikodým property in the Sacks model. Topol. Appl. 230, 24–34 (2017) es_ES
dc.description.references Talagrand, M.: Propriété de Nikodým and propriété de Grothendieck. Stud. Math. 78, 165–171 (1984) es_ES
dc.description.references Valdivia, M.: On certain barrelled normed spaces. Ann. Inst. Fourier 29, 39–56 (1979) es_ES
dc.description.references Valdivia, M.: On Nikodým boundedness property. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 107, 355–372 (2013) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem