- -

Explicit Neural Network-derived formula for overtopping flow on mound breakwaters in depth-limited breaking wave conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Explicit Neural Network-derived formula for overtopping flow on mound breakwaters in depth-limited breaking wave conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mares-Nasarre, Patricia es_ES
dc.contributor.author Molines, Jorge es_ES
dc.contributor.author GÓMEZ-MARTÍN, M. ESTHER es_ES
dc.contributor.author Medina, Josep R. es_ES
dc.date.accessioned 2021-11-05T14:09:09Z
dc.date.available 2021-11-05T14:09:09Z
dc.date.issued 2021-03 es_ES
dc.identifier.issn 0378-3839 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176359
dc.description.abstract [EN] Sea level rise due to climate change, as well as social pressure to decrease the visual impact of coastal structures, have led to reduced crest freeboards, and this increases the overtopping hazard. In previous studies, pedestrian safety during overtopping events was assessed considering the overtopping layer thickness (OLT) and the overtopping flow velocity (OFV). This study analyzed the statistics of OLT and OFV on mound breakwaters without crown walls during severe wave storms. Small-scale 2D physical tests were conducted on mound breakwaters with dimensionless crest freeboards between 0.29 and 1.77, testing three armor layers (single-layer Cubipod (R), and double-layer cubes and rocks) in depth-limited breaking wave conditions and with two bottom slopes. Neural Networks were used to develop new estimators for the OLT and OFV exceeded by 2% of the incoming waves with a high coefficient of determination (0.866 < R-2 < 0.876). The best number of significant figures in the empirical coefficients of the new estimators was determined according to their variability. The 1 parameter Exponential and Rayleigh distribution functions were proposed to estimate the extreme values of OLT and OFV with 0.803 < R-2 < 0.812, respectively. es_ES
dc.description.sponsorship The authors thank the three anonymous reviewers for their comments and suggestions. The authors acknowledge the financial support from the Spanish Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) under grant RTI2018-101073-BI00. The first author was also financially supported through the FPU program (Formacion de Profesorado Universitario) funded by the Spanish Ministerio de Educacion, Cultura y Deporte under grant FPU16/05081. The authors thank Debra Westall for revising the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Coastal Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Mound breakwater es_ES
dc.subject Wave overtopping es_ES
dc.subject Overtopping layer thickness es_ES
dc.subject Overtopping flow velocity es_ES
dc.subject Depth-limited breaking wave conditions es_ES
dc.subject Cubipod (R) es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Explicit Neural Network-derived formula for overtopping flow on mound breakwaters in depth-limited breaking wave conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.coastaleng.2020.103810 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101073-B-I00/ES/ESTABILIDAD HIDRAULICA Y TRANSMISION DE DIQUES ROMPEOLAS HOMOGENEOS DE BAJA COTA DISEÑADOS A ROTURA POR FONDO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F05081/ES/FPU16%2F05081/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.description.bibliographicCitation Mares-Nasarre, P.; Molines, J.; Gómez-Martín, ME.; Medina, JR. (2021). Explicit Neural Network-derived formula for overtopping flow on mound breakwaters in depth-limited breaking wave conditions. Coastal Engineering. 164:1-17. https://doi.org/10.1016/j.coastaleng.2020.103810 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.coastaleng.2020.103810 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 164 es_ES
dc.relation.pasarela S\422907 es_ES
dc.contributor.funder MINISTERIO DE EDUCACION es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.subject.ods 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem