Nieto-Del-Amor, F.; Prats-Boluda, G.; Martínez-De-Juan, JL.; Díaz-Martínez, MDA.; Monfort-Ortiz, R.; Diago-Almela, VJ.; Ye Lin, Y. (2021). Optimized Feature Subset Selection Using Genetic Algorithm for Preterm Labor Prediction Based on Electrohysterography. Sensors. 21(10):1-15. https://doi.org/10.3390/s21103350
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176381
Title: | Optimized Feature Subset Selection Using Genetic Algorithm for Preterm Labor Prediction Based on Electrohysterography | |
Author: | Monfort-Ortiz, Rogelio Diago-Almela, Vicente Jose | |
UPV Unit: |
|
|
Issued date: |
|
|
Abstract: |
[EN] Electrohysterography (EHG) has emerged as an alternative technique to predict preterm labor, which still remains a challenge for the scientific-technical community. Based on EHG parameters, complex classification ...[+]
|
|
Subjects: |
|
|
Copyrigths: | Reconocimiento (by) | |
Source: |
|
|
DOI: |
|
|
Publisher: |
|
|
Publisher version: | https://doi.org/10.3390/s21103350 | |
Project ID: |
|
|
Thanks: |
|
|
Type: |
|