- -

On weakly compact sets in C(X)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On weakly compact sets in C(X)

Mostrar el registro completo del ítem

Ferrando, JC.; López Alfonso, S. (2021). On weakly compact sets in C(X). Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(2):1-8. https://doi.org/10.1007/s13398-020-00987-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176410

Ficheros en el ítem

Metadatos del ítem

Título: On weakly compact sets in C(X)
Autor: Ferrando, J. C. López Alfonso, Salvador
Entidad UPV: Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Fecha difusión:
Resumen:
[EN] A subset A of a locally convex space E is called (relatively) sequentially complete if every Cauchy sequence {x(n)}(n=1)(infinity) in E contained in A converges to a point x is an element of A (a point x is an element ...[+]
Palabras clave: Lindelof Sigma-space , Realcompact space , Mu-Space , Sequentially complete set
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-020-00987-0
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-020-00987-0
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094431-B-I00/ES/ESPACIOS DE FUNCIONES: FUNCIONES ANALITICAS Y OPERADORES DE COMPOSICION. RENORMAMIENTOS Y TOPOLOGIA DESCRIPTIVA/
Agradecimientos:
This work was supported for the first named author by the Grant PGC2018-094431-B-I00 of Ministry of Science, Innovation and Universities of Spain.
Tipo: Artículo

References

Arkhangel’skiĭ, A. V.: Topological function spaces. In: Math. Appl. vol. 78, Kluwer Academic Publishers, Dordrecht, Boston, London (1992)

Banakh, T., Ka̧kol, J., Śliwa, W.: Josefson-Nissenzweig property for $$C_{p}$$-spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113, 3015–3030 (2019)

Baturov, D.P.: Subspaces of function spaces. Vestnik Moskov. Univ. Ser. I Mat. Mech. 4, 66–69 (1987) [+]
Arkhangel’skiĭ, A. V.: Topological function spaces. In: Math. Appl. vol. 78, Kluwer Academic Publishers, Dordrecht, Boston, London (1992)

Banakh, T., Ka̧kol, J., Śliwa, W.: Josefson-Nissenzweig property for $$C_{p}$$-spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113, 3015–3030 (2019)

Baturov, D.P.: Subspaces of function spaces. Vestnik Moskov. Univ. Ser. I Mat. Mech. 4, 66–69 (1987)

Bogachev, V.I., Smolyanov, O.G.: Topological Vector Spaces and Their Applications. Springer, Heidelberg (2017)

Buzyakova, R.Z.: In search of Lindelöf $$C_{p}$$ ’s. Comment. Math. Univ. Carolinae 45, 145–151 (2004)

Cascales, B., Muñoz, M., Orihuela, J.: The number of $$K$$-determination of topological spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 106, 341–357 (2012)

Cembranos, P., Mendoza, J.: Banach Spaces of Vector-Valued Functions. Lecture Notes in Math, vol. 1676. Springer, Berlin, Heidelberg (1997)

Ferrando, J.C.: On a Theorem of D.P. Baturov. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111, 499–505 (2017)

Ferrando, J. C.: Descriptive topology for analysts. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114, Paper No. 107, 34 pp. (2020)

Ferrando, J.C., Gabriyelyan, S., Ka̧kol, J., : Metrizable-like locally convex topologies on $$C(X)$$. Topol. Appl. 230, 105–113 (2017)

Ferrando, J.C., Ka̧kol, J., Saxon, S. A, : Characterizing $$P$$-spaces in terms of $$C\left( X\right) $$. J. Convex Anal. 22, 905–915 (2015)

Ferrando, J.C., López-Pellicer, M.: Covering properties of $$C_{p}\left( X\right) $$ and $$C_{k}\left( X\right) $$ (Filomat, to appear)

Floret, K.: Weakly Compact Sets. Lecture Notes in Math, vol. 801. Springer, Berlin, Heidelberg (1980)

Gabriyelyan, S.: Ascoli’s theorem for pseudocompact spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114, Paper No. 174, 10 pp. (2020)

Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)

Ka̧kol, J., Kubis, W., López-Pellicer, M., : Descriptive Topology in Selected Topics of Functional Analysis. Springer, Heidelberg (2011)

King, D.M., Morris, S.A.: The Stone-Čech compactification and weakly Fréchet spaces. Bull. Austral. Math. Soc. 42, 340–352 (1990)

Muñoz, M.: A note on the theorem of Baturov. Bull. Austral. Math. Soc. 76, 219–225 (2007)

Orihuela, J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36, 143–152 (1987)

Pełczyński, A., Semadeni, Z.: Spaces of continuous functions (III) (Spaces $$C\left( \Omega \right) $$ for $$\Omega $$ without perfect sets). Studia Math. 18, 211–222 (1959)

Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1973)

Talagrand, M.: Espaces de Banach faiblement $$K$$ -analytiques. Ann. Math. 110, 407–438 (1979)

Tkachuk, V.V.: The space $$C_{p}(X)$$: decomposition into a countable union of bounded subspaces and completeness properties. Topol. Appl. 22, 241–253 (1986)

Tkachuk, V.V.: A $$C_{p}$$-Theory Problem Book. Topological and Function Spaces. Springer, Heidelberg (2011)

Todorcevic, S.: Topics in Topology. Springer, Berlin (1997)

Valdivia, M.: Some new results on weak compactness. J. Funct. Anal. 24, 1–10 (1977)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem