- -

MSIR@FIRE: A Comprehensive Report from 2013 to 2016

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MSIR@FIRE: A Comprehensive Report from 2013 to 2016

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Banerjee, Somnath es_ES
dc.contributor.author Choudhury, Monojit es_ES
dc.contributor.author Chakma, Kunal es_ES
dc.contributor.author Kumar Naskar, Sudip es_ES
dc.contributor.author Das, Amitava es_ES
dc.contributor.author Bandyopadhyay, Sivaji es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2021-11-05T14:10:50Z
dc.date.available 2021-11-05T14:10:50Z
dc.date.issued 2020 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176432
dc.description.abstract [EN] India is a nation of geographical and cultural diversity where over 1600 dialects are spoken by the people. With the technological advancement, penetration of the internet and cheaper access to mobile data, India has recently seen a sudden growth of internet users. These Indian internet users generate contents either in English or in other vernacular Indian languages. To develop technological solutions for the contents generated by the Indian users using the Indian languages, the Forum for Information Retrieval Evaluation (FIRE) was established and held for the first time in 2008. Although Indian languages are written using indigenous scripts, often websites and user-generated content (such as tweets and blogs) in these Indian languages are written using Roman script due to various socio-cultural and technological reasons. A challenge that search engines face while processing transliterated queries and documents is that of extensive spelling variation. MSIR track was first introduced in 2013 at FIRE and the aim of MSIR was to systematically formalize several research problems that one must solve to tackle the code mixing in Web search for users of many languages around the world, develop related data sets, test benches and most importantly, build a research community focusing on this important problem that has received very little attention. This document is a comprehensive report on the 4 years of MSIR track evaluated at FIRE between 2013 and 2016. es_ES
dc.description.sponsorship Somnath Banerjee and Sudip Kumar Naskar are supported by Media Lab Asia, MeitY, Government of India, under the Visvesvaraya PhD Scheme for Electronics & IT. The work of Paolo Rosso was partially supported by the MISMIS research project PGC2018-096212-B-C31 funded by the Spanish MICINN. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof SN Computer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Information retrieval es_ES
dc.subject Indian languages es_ES
dc.subject Social media es_ES
dc.subject Transliterated search es_ES
dc.subject Code-mixed QA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title MSIR@FIRE: A Comprehensive Report from 2013 to 2016 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s42979-019-0058-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Banerjee, S.; Choudhury, M.; Chakma, K.; Kumar Naskar, S.; Das, A.; Bandyopadhyay, S.; Rosso, P. (2020). MSIR@FIRE: A Comprehensive Report from 2013 to 2016. SN Computer Science. 1(55):1-15. https://doi.org/10.1007/s42979-019-0058-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s42979-019-0058-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 55 es_ES
dc.identifier.eissn 2661-8907 es_ES
dc.relation.pasarela S\434253 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Ahmed UZ, Bali K, Choudhury M, Sowmya VB. Challenges in designing input method editors for Indian languages: the role of word-origin and context. In: Advances in text input methods (WTIM 2011). 2011. pp. 1–9 es_ES
dc.description.references Banerjee S, Chakma K, Naskar SK, Das A, Rosso P, Bandyopadhyay S, Choudhury M. Overview of the mixed script information retrieval (MSIR) at fire-2016. In: Forum for information retrieval evaluation. Springer; 2016. pp. 39–49. es_ES
dc.description.references Banerjee S, Kuila A, Roy A, Naskar SK, Rosso P, Bandyopadhyay S. A hybrid approach for transliterated word-level language identification: CRF with post-processing heuristics. In: Proceedings of the forum for information retrieval evaluation, ACM, 2014. pp. 54–59. es_ES
dc.description.references Banerjee S, Naskar S, Rosso P, Bandyopadhyay S. Code mixed cross script factoid question classification—a deep learning approach. J Intell Fuzzy Syst. 2018;34(5):2959–69. es_ES
dc.description.references Banerjee S, Naskar SK, Rosso P, Bandyopadhyay S. The first cross-script code-mixed question answering corpus. In: Proceedings of the workshop on modeling, learning and mining for cross/multilinguality (MultiLingMine 2016), co-located with the 38th European Conference on Information Retrieval (ECIR). 2016. es_ES
dc.description.references Banerjee S, Naskar SK, Rosso P, Bandyopadhyay S. Named entity recognition on code-mixed cross-script social media content. Comput Sistemas. 2017;21(4):681–92. es_ES
dc.description.references Barman U, Das A, Wagner J, Foster J. Code mixing: a challenge for language identification in the language of social media. In: Proceedings of the first workshop on computational approaches to code switching. 2014. pp. 13–23. es_ES
dc.description.references Bhardwaj P, Pakray P, Bajpeyee V, Taneja A. Information retrieval on code-mixed Hindi–English tweets. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. 2016. es_ES
dc.description.references Bhargava R, Khandelwal S, Bhatia A, Sharmai Y. Modeling classifier for code mixed cross script questions. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016. es_ES
dc.description.references Bhattacharjee D, Bhattacharya, P. Ensemble classifier based approach for code-mixed cross-script question classification. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016. es_ES
dc.description.references Chakma K, Das A. CMIR: a corpus for evaluation of code mixed information retrieval of Hindi–English tweets. In: The 17th international conference on intelligent text processing and computational linguistics (CICLING). 2016. es_ES
dc.description.references Choudhury M, Chittaranjan G, Gupta P, Das A. Overview of fire 2014 track on transliterated search. Proceedings of FIRE. 2014. pp. 68–89. es_ES
dc.description.references Ganguly D, Pal S, Jones GJ. Dcu@fire-2014: fuzzy queries with rule-based normalization for mixed script information retrieval. In: Proceedings of the forum for information retrieval evaluation, ACM, 2014. pp. 80–85. es_ES
dc.description.references Gella S, Sharma J, Bali K. Query word labeling and back transliteration for Indian languages: shared task system description. FIRE Working Notes. 2013;3. es_ES
dc.description.references Gupta DK, Kumar S, Ekbal A. Machine learning approach for language identification and transliteration. In: Proceedings of the forum for information retrieval evaluation, ACM, 2014. pp. 60–64. es_ES
dc.description.references Gupta P, Bali K, Banchs RE, Choudhury M, Rosso P. Query expansion for mixed-script information retrieval. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval, ACM, 2014. pp. 677–686. es_ES
dc.description.references Gupta P, Rosso P, Banchs RE. Encoding transliteration variation through dimensionality reduction: fire shared task on transliterated search. In: Fifth forum for information retrieval evaluation. 2013. es_ES
dc.description.references HB Barathi Ganesh, M Anand Kumar, KP Soman. Distributional semantic representation for information retrieval. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. 2016. es_ES
dc.description.references HB Barathi Ganesh, M Anand Kumar, KP Soman. Distributional semantic representation for text classification. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016. es_ES
dc.description.references Järvelin K, Kekäläinen J. Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst. 2002;20:422–46. https://doi.org/10.1145/582415.582418. es_ES
dc.description.references Joshi H, Bhatt A, Patel H. Transliterated search using syllabification approach. In: Forum for information retrieval evaluation. 2013. es_ES
dc.description.references King B, Abney S. Labeling the languages of words in mixed-language documents using weakly supervised methods. In: Proceedings of NAACL-HLT, 2013. pp. 1110–1119. es_ES
dc.description.references Londhe N, Srihari RK. Exploiting named entity mentions towards code mixed IR: working notes for the UB system submission for MSIR@FIRE’16. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. 2016. es_ES
dc.description.references Anand Kumar M, Soman KP. Amrita-CEN@MSIR-FIRE2016: Code-mixed question classification using BoWs and RNN embeddings. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016. es_ES
dc.description.references Majumder G, Pakray P. NLP-NITMZ@MSIR 2016 system for code-mixed cross-script question classification. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016. es_ES
dc.description.references Mandal S, Banerjee S, Naskar SK, Rosso P, Bandyopadhyay S. Adaptive voting in multiple classifier systems for word level language identification. In: FIRE workshops, 2015. pp. 47–50. es_ES
dc.description.references Mukherjee A, Ravi A , Datta K. Mixed-script query labelling using supervised learning and ad hoc retrieval using sub word indexing. In: Proceedings of the Forum for Information Retrieval Evaluation, Bangalore, India, 2014. es_ES
dc.description.references Pakray P, Bhaskar P. Transliterated search system for Indian languages. In: Pre-proceedings of the 5th FIRE-2013 workshop, forum for information retrieval evaluation (FIRE). 2013. es_ES
dc.description.references Patel S, Desai V. Liga and syllabification approach for language identification and back transliteration: a shared task report by da-iict. In: Proceedings of the forum for information retrieval evaluation, ACM, 2014. pp. 43–47. es_ES
dc.description.references Prabhakar DK, Pal S. Ism@fire-2013 shared task on transliterated search. In: Post-Proceedings of the 4th and 5th workshops of the forum for information retrieval evaluation, ACM, 2013. p. 17. es_ES
dc.description.references Prabhakar DK, Pal S. Ism@ fire-2015: mixed script information retrieval. In: FIRE workshops. 2015. pp. 55–58. es_ES
dc.description.references Prakash A, Saha SK. A relevance feedback based approach for mixed script transliterated text search: shared task report by bit Mesra. In: Proceedings of the Forum for Information Retrieval Evaluation, Bangalore, India, 2014. es_ES
dc.description.references Raj A, Karfa S. A list-searching based approach for language identification in bilingual text: shared task report by asterisk. In: Working notes of the shared task on transliterated search at forum for information retrieval evaluation FIRE’14. 2014. es_ES
dc.description.references Roy RS, Choudhury M, Majumder P, Agarwal K. Overview of the fire 2013 track on transliterated search. In: Post-proceedings of the 4th and 5th workshops of the forum for information retrieval evaluation, ACM, 2013. p. 4. es_ES
dc.description.references Saini A. Code mixed cross script question classification. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016. es_ES
dc.description.references Salton G, McGill MJ. Introduction to modern information retrieval. New York: McGraw-Hill, Inc.; 1986. es_ES
dc.description.references Sequiera R, Choudhury M, Gupta P, Rosso P, Kumar S, Banerjee S, Naskar SK, Bandyopadhyay S, Chittaranjan G, Das A, et al. Overview of fire-2015 shared task on mixed script information retrieval. FIRE Workshops. 2015;1587:19–25. es_ES
dc.description.references Singh S, M Anand Kumar, KP Soman. CEN@Amrita: information retrieval on code mixed Hindi–English tweets using vector space models. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. 2016. es_ES
dc.description.references Sinha N, Srinivasa G. Hindi–English language identification, named entity recognition and back transliteration: shared task system description. In: Working notes os shared task on transliterated search at forum for information retrieval evaluation FIRE’14. 2014. es_ES
dc.description.references Voorhees EM, Tice DM. The TREC-8 question answering track evaluation. In: TREC-8, 1999. pp. 83–105. es_ES
dc.description.references Vyas Y, Gella S, Sharma J, Bali K, Choudhury M. Pos tagging of English–Hindi code-mixed social media content. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014. pp. 974–979. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem