- -

Pennes' bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pennes' bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation

Mostrar el registro completo del ítem

Tucci, C.; Trujillo Guillen, M.; Berjano, E.; Iasiello, M.; Andreozzi, A.; Vanoli, GP. (2021). Pennes' bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation. Scientific Reports. 11(1):1-13. https://doi.org/10.1038/s41598-021-84546-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176533

Ficheros en el ítem

Metadatos del ítem

Título: Pennes' bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation
Autor: Tucci, Claudio Trujillo Guillen, Macarena Berjano, Enrique Iasiello, Marcello Andreozzi, Assunta Vanoli, Giuseppe Peter
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The objective of this study was to compare three different heat transfer models for radiofrequency ablation of in vivo liver tissue using a cooled electrode and three different voltage levels. The comparison was between ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-021-84546-6
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-021-84546-6
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/
info:eu-repo/grantAgreement/MIUR//PRIN-2017F7KZWS/
Agradecimientos:
This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad under "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad", Grant No "RTI2018-094357-B-C21" ...[+]
Tipo: Artículo

References

Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).

Brace, C. Thermal tumor ablation in clinical use. IEEE Pulse 2, 28–38 (2011).

Pennes, H. H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948). [+]
Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).

Brace, C. Thermal tumor ablation in clinical use. IEEE Pulse 2, 28–38 (2011).

Pennes, H. H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948).

Andreozzi, A., Brunese, L., Iasielllo, M., Tucci, C. & Vanoli, G. P. Modeling heat transfer in tumors: a review of thermal therapies. Ann. Biomed. Eng. 47, 676–693 (2019).

Khaled, A.-R.A. & Vafai, K. The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat. Mass Transf. 46, 4989–5003 (2003).

Rattanadecho, P. & Keangin, P. Numerical study of heat transfer and blood flow in two-layered porous liver tissue during microwave ablation process using single and double slot antenna. Int. J. Heat. Mass. Transf. 58, 457–470 (2013).

Khanafer, K. & Vafai, K. The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transf. 42, 939–953 (2006).

Namakshenas, P. & Mojra, A. Microstructure-based non-Fourier heat transfer modeling of HIFU treatment for thyroid cancer. Comput. Meth. Prog Biol. 197, 105698 (2020).

Wessapan, T. & Rattanadecho, P. Acoustic streaming effect on flow and heat transfer in porous tissue during exposure to focused ultrasound. Case. Stud. Therm. Eng. 21, 100670 (2020).

Dutta, J., Kundu, B. & Yook, S. J. Three-dimensional thermal assessment in cancerous tumors based on local thermal non-equilibrium approach for hyperthermia treatment. Int. J. Therm. Sci. 159, 106591 (2021).

Gunakala, S. R., Job, V. M., Sakhamuri, S., Murthy, P. V. S. N. & Chowdary, B. V. Numerical study of blood perfusion and nanoparticle transport in prostate and muscle tumours during intravenous magnetic hyperthermia. Alex Eng. J. 60, 859–876 (2021).

Trujillo, M., Bon, J., Rivera, M. J., Burdio, F. & Berjano, E. Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. Int. J. Hyperthermia 32, 931–939 (2016).

Fukushima, T. et al. Randomized controlled trial comparing the efficacy of impedance control and temperature control of radiofrequency interstitial thermal ablation for treating small hepatocellular carcinoma. Oncology 89, 47–52 (2015).

Cuenod, C. A. & Balvay, D. Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI. Diagn. Interv. Imaging 94, 1187–1204 (2013).

Keangin, P., Vafai, K. & Rattanadecho, P. Electromagnetic field effects on biological materials. Int. J. Heat Mass Transf. 65, 389–399 (2013).

He, Y. et al. Finite element analysis of blood flow and heat transfer in an image-based human finger. Comput. Biol. Med. 38, 555–562 (2008).

Gilbert, R. P. et al. Computing porosity of cancellous bone using ultrasonic waves II: The muscle, cortical, cancellous bone system. Math. Comput. Model. 50, 421–429 (2009).

Wessapan, T. & Rattanadecho, P. Specific absorption rate and temperature increase in human eye subjected to electromagnetic fields at 900 MHz. ASME J. Heat Transf. 134, 911011–9110111 (2012).

Effros, R. M., Lowenstein, J., Baldwin, D. S. & Chinard, F. P. Vascular and extravascular volumes of the kidney of man. Circ. Res. 20, 162–173 (1967).

Taniguchi, H., Masuyama, M., Koyama, H., Oguro, A. & Takahashi, T. Quantitative measurement of human tissue hepatic blood volume by C15O inhalation with positron-emission tomography. Liver 16, 258–262 (1996).

Yuan, P. Numerical analysis of temperature and thermal dose response of biological tissues to thermal non-equilibrium during hyperthermia therapy. Med. Eng. Phys. 30, 135–143 (2008).

Andreozzi A, Brunese L, Iasiello M, Tucci C, Vanoli GP. Bioheat transfer in a spherical biological tissue: a comparison among various models. J Phys Conf Ser 2019;1224:012001. [19] Vafai K. Handbook of porous media. Boca Raton: CRC Press (2015).

Goldberg, S. N. et al. Percutaneous radiofrequency tissue ablation: optimization of pulsed-radiofrequency technique to increase coagulation necrosis. J. Vasc. Interv. Radiol. 10, 907–916 (1999).

Dobson EL, Warner GF, Finney CR, Johnston ME. The Measurement of Liver.

Schwickert, H. C. et al. Quantification of liver blood volume: comparison of ultra short ti inversion recovery echo planar imaging (ulstir-epi), with dynamic 3d-gradient recalled echo imaging. Magn. Reson. Med. 34, 845–852 (1995).

Stewart, E. E., Chen, X., Hadway, J. & Lee, T. Y. Correlation between hepatic tumor blood flow and glucose utilization in a rabbit liver tumor model. Radiology 239, 740–750 (2006).

Solazzo, S. A., Ahmed, M., Liu, Z., Hines-Peralta, A. U. & Goldberg, S. N. High-power generator for radiofrequency ablation: larger electrodes and pulsing algorithms in bovine ex vivo and porcine in vivo settings. Radiology 242, 743–750 (2007).

Song, K. D. et al. Hepatic radiofrequency ablation: in vivo and ex vivo comparisons of 15-gauge (G) and 17-G internally cooled electrodes. Br. J. Radiol. 88(1050), 20140497 (2015).

Lee, J. M. et al. Radiofrequency ablation of the porcine liver in vivo: increased coagulation with an internally cooled perfusion electrode. Acad. Radiol. 13, 343–352 (2006).

Haemmerich, D. et al. In vivo electrical conductivity of hepatic tumours. Physiol. Meas. 24, 251–260 (2003).

Abraham, J. P. & Sparrow, E. M. A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. Int. J. Heat. Mass Transf. 50, 2537–2544 (2007).

Pätz, T., Kröger, T. & Preusser, T. Simulation of radiofrequency ablation including water evaporation. IFMBE Proc. 25/IV, 1287–1290 (2009).

Trujillo, M., Alba, J. & Berjano, E. Relation between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. Int. J. Hyperthermia 28, 62–68 (2012).

Haemmerich, D. et al. Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Trans. Biomed. Eng. 50, 493–499 (2003).

Chang, I. A. Considerations for thermal injury analysis for RF ablation devices. Biomed. Eng. Online 4, 3–12 (2010).

Jacques, S., Rastegar, S., Thomsen, S. & Motamedi, M. The role of dynamic changes in blood perfusion and optical properties in laser coagulation tissue. IEEE J. Sel. Top Quant. Electron. 2, 922–933 (1996).

Hall, S. K., Ooi, E. H. & Payne, S. J. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. Int. J. Hyperthermia 31, 538–550 (2015).

Roetzel, W. & Xuan, Y. Bioheat equation of the human thermal system. Chem. Eng. Technol. 20, 268–276 (1997).

Nakayama, A. & Kuwahara, F. A general bioheat transfer model based on the theory of porous media. Int. J. Heat Mass Transf. 51, 3190–3199 (2008).

Vafai, K. Handbook of porous media (CRC Press, 2015).

Woodard, H. Q. & White, D. R. The composition of body tissues. Br. J. Radiol. 59, 1209–1219 (1986).

Crezee, J. & Lagendijk, J. J. W. Temperature uniformity during hyperthermia: the impact of large vessels. Phys. Med. Biol. 37, 1321–1337 (1992).

Chen, M. M. & Holmes, K. R. Microvascular contributions in tissue heat transfer. Ann. NY Acad. Sci. 335, 137–150 (1980).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem