- -

Delay time of waves performing Levy walks in 1D random media

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Delay time of waves performing Levy walks in 1D random media

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Razo-López, L. A. es_ES
dc.contributor.author Fernández-Marín, A. A. es_ES
dc.contributor.author Mendez-Bermudez, J. A. es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.contributor.author Gopar, V. A. es_ES
dc.date.accessioned 2021-11-10T04:35:20Z
dc.date.available 2021-11-10T04:35:20Z
dc.date.issued 2020-11-30 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176716
dc.description.abstract [EN] The time that waves spend inside 1D random media with the possibility of performing Lévy walks is experimentally and theoretically studied. The dynamics of quantum and classical wave diffusion has been investigated in canonical disordered systems via the delay time. We show that a wide class of disorder¿Lévy disorder¿leads to strong random fluctuations of the delay time; nevertheless, some statistical properties such as the tail of the distribution and the average of the delay time are insensitive to Lévy walks. Our results reveal a universal character of wave propagation that goes beyond standard Brownian wave-diffusion. es_ES
dc.description.sponsorship A. A. F.-M. thanks the hospitality of the Laboratoire d'Acoustique de l'Universite du Mans, France, where part of this work was done. J. A. M.-B, gratefully acknowledges to Departamento de Matematica Aplicada e Estatistica, Instituto de Ciencias Matematicas e de Computacao, Universidade de Sao Paulo during which this work was completed. J.A.M.-B. was supported by FAPESP (Grant No. 2019/06931-2), Brazil. A. A. F.-M. thanks partial support by RFI Le Mans Acoustique and by the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire. V. A. G. acknowledges support by MCIU (Spain) under the Project number PGC2018-094684-B-C22. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Delay time of waves performing Levy walks in 1D random media es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-020-77861-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094684-B-C22/ES/SUPERCOMPUTACION Y SISTEMAS COMPLEJOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2019%2F06931-2/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Razo-López, LA.; Fernández-Marín, AA.; Mendez-Bermudez, JA.; Sánchez-Dehesa Moreno-Cid, J.; Gopar, VA. (2020). Delay time of waves performing Levy walks in 1D random media. Scientific Reports. 10(1):1-8. https://doi.org/10.1038/s41598-020-77861-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-020-77861-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33257814 es_ES
dc.identifier.pmcid PMC7705700 es_ES
dc.relation.pasarela S\448656 es_ES
dc.contributor.funder Region Pays de la Loire es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.description.references Wigner, E. P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 147, 145–147 (1955). es_ES
dc.description.references Smith, F. T. Lifetime matrix in collision theory. Phys. Rev. 119, 2098–2098 (1960). es_ES
dc.description.references Fercher, A. F., Drexler, W., Hitzenberger, C. K. & Lasser, T. Optical coherence tomography -principles and applications. Rep. Prog. Phys. 66, 239–303 (2003). es_ES
dc.description.references Lubatsch, A. & Frank, R. Self-consistent quantum field theory for the characterization of complex random media by short laser pulses. Phys. Rev. Res. 2, 013324 (2020). es_ES
dc.description.references Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958). es_ES
dc.description.references Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24–29 (2009). es_ES
dc.description.references Genack, A. Z., Sebbah, P., Stoytchev, M. & van Tiggelen, B. A. Statistics of wave dynamics in random media. Phys. Rev. Lett. 82, 715–718 (1999). es_ES
dc.description.references Sebbah, P., Legrand, O. & Genack, A. Z. Fluctuations in photon local delay time and their relation to phase spectra in random media. Phys. Rev. E 59, 2406–2411 (1999). es_ES
dc.description.references Chabanov, A. A. & Genack, A. Z. Statistics of dynamics of localized waves. Phys. Rev. Lett. 87, 233903 (2001). es_ES
dc.description.references Texier, C. Wigner time delay and related concepts: Application to transport in coherent conductors. Phys. E Low. Dimens. Syst. Nano Struct. 82, 16–33 (2016). es_ES
dc.description.references Texier, C. & Comtet, A. Universality of the Wigner time delay distribution for one-dimensional random potentials. Phys. Rev. Lett. 82, 4220–4223 (1999). es_ES
dc.description.references Schomerus, H., van Bemmel, K. J. H. & Beenakker, C. W. J. Coherent backscattering effect on wave dynamics in a random medium. EPL 52, 518–524 (2000). es_ES
dc.description.references Xu, F. & Wang, J. Statistics of Wigner delay time in Anderson disordered systems. Phys. Rev. B 84, 024205 (2011). es_ES
dc.description.references Ossipov, A. Scattering approach to Anderson localization. Phys. Rev. Lett. 121, 076601 (2018). es_ES
dc.description.references Pierrat, R. et al. Invariance property of wave scattering through disordered media. Proc. Natl Acad. Sci. USA 111, 17765–17770 (2014). es_ES
dc.description.references Blanco, S. & Fournier, R. An invariance property of diffusive random walks. EPL 61, 168–173 (2003). es_ES
dc.description.references Savo, R. et al. Observation of mean path length invariance in light-scattering media. Science 358, 765–768 (2017). es_ES
dc.description.references Falceto, F. & Gopar, V. A. Conductance through quantum wires with Lévy-type disorder: Universal statistics in anomalous quantum transport. EPL 92, 57014 (2010). es_ES
dc.description.references Amanatidis, I., Kleftogiannis, I., Falceto, F. & Gopar, V. A. Conductance of one-dimensional quantum wires with anomalous electron wave-function localization. Phys. Rev. B 85, 235450 (2012). es_ES
dc.description.references Kleftogiannis, I., Amanatidis, I. & Gopar, V. A. Conductance through disordered graphene nanoribbons: Standard and anomalous electron localization. Phys. Rev. B 88, 205414 (2013). es_ES
dc.description.references Lima, J. R. F., Pereira, L. F. C. & Barbosa, A. L. R. Dirac wave transmission in Lévy-disordered systems. Phys. Rev. E 99, 032118 (2019). es_ES
dc.description.references Mantegna, R. N. & Stanley, H. E. Scaling behaviour in the dynamics of an economic index. Nature 376, 46–49 (1995). es_ES
dc.description.references Reynolds, A. M. & Ouellette, N. T. Swarm dynamics may give rise to Lévy flights. Sci. Rep. 6, 30515 (2016). es_ES
dc.description.references Patel, R. & Mehta, R. V. Lévy distribution of time delay in emission of resonantly trapped light in ferrodispersions. J. Nanophoton. 6, 069503 (2012). es_ES
dc.description.references Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127 (1990). es_ES
dc.description.references Shlesinger, M. F., Klafter, J. & Zumofen, G. Above, below and beyond brownian motion. Am. J. Phys. 67, 1253–1259 (1999). es_ES
dc.description.references Barkai, E., Fleurov, V. & Klafter, J. One-dimensional stochastic Lévy-Lorentz gas. Phys. Rev. E 61, 1164–1169 (2000). es_ES
dc.description.references Barthelemy, P., Bertolotti, J. & Wiersma, D. A Lévy flight for light. Nature 453, 495–498 (2008). es_ES
dc.description.references Solomon, T. H., Weeks, E. R. & Swinney, H. L. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71, 3975–3978 (1993). es_ES
dc.description.references Mercadier, N., Guerin, W., Chevrollier, M. & Kaiser, R. Lévy flights of photons in hot atomic vapours. Nat. Phys. 5, 602–605 (2009). es_ES
dc.description.references Rocha, E. G. et al. Léy flights for light in ordered lasers. Phys. Rev. A 101, 023820 (2020). es_ES
dc.description.references Zaburdaev, V., Denisov, S. & Klafter, J. Lévy walks. Rev. Mod. Phys. 87, 483–530 (2015). es_ES
dc.description.references Uchaikin, V. V. & Zolotarev, V. M. Chance and Stability. Stable Distributions and Their Applications. (VSP, Utrecht, 1999). es_ES
dc.description.references Garrett, C. & McCumber, D. Propagation of a Gaussian light pulse through an anomalous dispersion medium. Phys. Rev. A 1, 305–313 (1970). es_ES
dc.description.references Dalitz, R. H. & Moorhouse, R. G. What is a resonance?. Proc. R. Soc. Lond. Ser. A 318, 279 (1970). es_ES
dc.description.references Chu, S. & Wong, S. Linear pulse propagation in an absorbing medium. Phys. Rev. Lett. 48, 738–741 (1982). es_ES
dc.description.references Durand, M., Popoff, S. M., Carminati, R. & Goetschy, A. Optimizing light storage in scattering media with the dwell-time operator. Phys. Rev. Lett. 123, 243901 (2019). es_ES
dc.description.references Anderson, P. W., Thouless, D. J., Abrahams, E. & Fisher, D. S. New method for a scaling theory of localization. Phys. Rev. B 22, 3519–3526 (1980). es_ES
dc.description.references Mello, P. & Kumar, N. Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuation (Oxford University Press, Oxford, 2004). es_ES
dc.description.references Mello, P. A. Central-limit theorems on groups. J. Math. Phys. 27, 2876–2891 (1986). es_ES
dc.description.references Jayannavar, A. M., Vijayagovindan, G. V. & Kumar, N. Energy dispersive backscattering of electrons from surface resonances of a disordered medium and 1/f noise. Z. Phys. B Condens. Matter 75, 77–79 (1989). es_ES
dc.description.references Heinrichs, J. Invariant embedding treatment of phase randomisation and electrical noise at disordered surfaces. J. Phys. Condens. Matter 2, 1559–1568 (1990). es_ES
dc.description.references Comtet, A. & Texier, C. On the distribution of the Wigner time delay in one-dimensional disordered systems. J. Phys. A: Math. Gen. 30, 8017–8025 (1997). es_ES
dc.description.references Bolton-Heaton, C. J., Lambert, C. J., Falḱo, V. I., Prigodin, V. & Epstein, A. J. Distribution of time constants for tunneling through a one-dimensional disordered chain. Phys. Rev. B 60, 10569–10572 (1999). es_ES
dc.description.references Beenakker, C. W. J. Dynamics of Localization in a Waveguide, 489–508 (Springer, Netherlands, 2001). es_ES
dc.description.references Klyatskin, V. I. & Saichev, A. I. Statistical and dynamic localization of plane waves in randomly layered media. Sov. Phys. Uspekhi 35, 231–247 (1992). es_ES
dc.description.references Anantha Ramakrishna, S. & Kumar, N. Imaginary potential as a counter of delay time for wave reflection from a one-dimensional random potential. Phys. Rev. B 61, 3163–3165 (2000). es_ES
dc.description.references Beenakker, C. W. J., Paasschens, J. C. J. & Brouwer, P. W. Probability of reflection by a random laser. Phys. Rev. Lett. 76, 1368–1371 (1996). es_ES
dc.description.references Kottos, T. Statistics of resonances and delay times in random media: beyond random matrix theory. J. Phys. A: Math. Gen. 38, 10761–10786 (2005). es_ES
dc.description.references Calvo, I., Cuchí, J. C., Esteve, J. G. & Falceto, F. Generalized central limit theorem and renormalization group. J. Stat. Phys. 141, 409 (2010). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem