- -

Supports in Lipschitz-free spaces and applications to extremal structure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Supports in Lipschitz-free spaces and applications to extremal structure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aliaga, Ramón J. es_ES
dc.contributor.author Pernecká, Eva es_ES
dc.contributor.author Petitjean, Colin es_ES
dc.contributor.author Procházka, Antonín es_ES
dc.date.accessioned 2021-11-10T19:05:40Z
dc.date.available 2021-11-10T19:05:40Z
dc.date.issued 2020-09-01 es_ES
dc.identifier.issn 0022-247X es_ES
dc.identifier.uri http://hdl.handle.net/10251/176793
dc.description.abstract [EN] We show that the class of Lipschitz-free spaces over closed subsets of any complete metric space M is closed under arbitrary intersections, improving upon the previously known finite-diameter case. This allows us to formulate a general and natural definition of supports for elements in a Lipschitz-free space F(M). We then use this concept to study the extremal structure of F(M). We prove in particular that (¿(x)¿¿(y))/d(x,y) is an exposed point of the unit ball of F(M) whenever the metric segment [x,y] is trivial, and that any extreme point which can be expressed as a finitely supported perturbation of a positive element must be finitely supported itself. We also characterize the extreme points of the positive unit ball: they are precisely the normalized evaluation functionals on points of M. es_ES
dc.description.sponsorship This work was supported by the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-15-IDEX-03). R. J. Aliaga was also partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant MTM2017-83262-C2-2-P. E. Pernecka was supported by the grant GACR 18-00960Y of the Czech Science Foundation. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Mathematical Analysis and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Exposed point es_ES
dc.subject Extreme point es_ES
dc.subject Lipschitz-free space es_ES
dc.subject Lipschitz function es_ES
dc.subject Support es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Supports in Lipschitz-free spaces and applications to extremal structure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jmaa.2020.124128 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-2-P/ES/LA INTERACCION ENTRE GEOMETRIA Y TOPOLOGIA EN ESPACIOS DE BANACH. APLICACIONES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-15-IDEX-03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GACR//GACR 18-00960Y/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Aliaga, RJ.; Pernecká, E.; Petitjean, C.; Procházka, A. (2020). Supports in Lipschitz-free spaces and applications to extremal structure. Journal of Mathematical Analysis and Applications. 489(1):1-14. https://doi.org/10.1016/j.jmaa.2020.124128 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jmaa.2020.124128 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 489 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\413515 es_ES
dc.contributor.funder Czech Science Foundation es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem