Mostrar el registro sencillo del ítem
dc.contributor.author | Aliaga, Ramón J. | es_ES |
dc.contributor.author | Pernecká, Eva | es_ES |
dc.contributor.author | Petitjean, Colin | es_ES |
dc.contributor.author | Procházka, Antonín | es_ES |
dc.date.accessioned | 2021-11-10T19:05:40Z | |
dc.date.available | 2021-11-10T19:05:40Z | |
dc.date.issued | 2020-09-01 | es_ES |
dc.identifier.issn | 0022-247X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176793 | |
dc.description.abstract | [EN] We show that the class of Lipschitz-free spaces over closed subsets of any complete metric space M is closed under arbitrary intersections, improving upon the previously known finite-diameter case. This allows us to formulate a general and natural definition of supports for elements in a Lipschitz-free space F(M). We then use this concept to study the extremal structure of F(M). We prove in particular that (¿(x)¿¿(y))/d(x,y) is an exposed point of the unit ball of F(M) whenever the metric segment [x,y] is trivial, and that any extreme point which can be expressed as a finitely supported perturbation of a positive element must be finitely supported itself. We also characterize the extreme points of the positive unit ball: they are precisely the normalized evaluation functionals on points of M. | es_ES |
dc.description.sponsorship | This work was supported by the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-15-IDEX-03). R. J. Aliaga was also partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant MTM2017-83262-C2-2-P. E. Pernecka was supported by the grant GACR 18-00960Y of the Czech Science Foundation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Exposed point | es_ES |
dc.subject | Extreme point | es_ES |
dc.subject | Lipschitz-free space | es_ES |
dc.subject | Lipschitz function | es_ES |
dc.subject | Support | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Supports in Lipschitz-free spaces and applications to extremal structure | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jmaa.2020.124128 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-2-P/ES/LA INTERACCION ENTRE GEOMETRIA Y TOPOLOGIA EN ESPACIOS DE BANACH. APLICACIONES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-15-IDEX-03/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//GACR 18-00960Y/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Aliaga, RJ.; Pernecká, E.; Petitjean, C.; Procházka, A. (2020). Supports in Lipschitz-free spaces and applications to extremal structure. Journal of Mathematical Analysis and Applications. 489(1):1-14. https://doi.org/10.1016/j.jmaa.2020.124128 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jmaa.2020.124128 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 489 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\413515 | es_ES |
dc.contributor.funder | Czech Science Foundation | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |