Mostrar el registro sencillo del ítem
dc.contributor.author | Molins, Arantzazu | es_ES |
dc.contributor.author | Chiva, Salvador | es_ES |
dc.contributor.author | Calatayud, Angeles | es_ES |
dc.contributor.author | Marco, Francisco | es_ES |
dc.contributor.author | García-Breijo, Francisco-José | es_ES |
dc.contributor.author | Reig-Arminana, Jose | es_ES |
dc.contributor.author | Carrasco, Pedro | es_ES |
dc.contributor.author | Moya, Patricia | es_ES |
dc.date.accessioned | 2021-11-12T19:30:51Z | |
dc.date.available | 2021-11-12T19:30:51Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 0334-5114 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/177029 | |
dc.description.abstract | [EN] The Canary Islands are famous for their extraordinary biodiversity; however, lichenized algae have only been studied partially. Buellia zoharyi is a circum-Mediterranean/Macaronesian species that usually occurs in semi-arid areas of the Mediterranean, but occasionally some interesting communities of this species grow on basaltic lava flows in Lanzarote, Fuerteventura and Tenerife. Those three locations showed similar ecological conditions, but different mean annual temperatures. Here we applied a multidisciplinary approach to describe microalgae diversity from B. zoharyi covering the entire described range of distribution in the Canary Islands. Photobionts were characterized in symbiosis using molecular and microscopic techniques. Different Trebouxia spp. were detected as primary photobiont in each island (Trebouxia cretacea-Fuerteventura, T. asymmetrica-Lanzarote and Trebouxia sp. `arnoldoi '-Tenerife). Coexistence of various Trebouxia spp. within a thallus were detected by using specific primers-PCR. Those three photobionts were isolated and cultured under laboratory conditions. Different phytohormone profiles were obtained in the isolated strains which suggest different internal signalling needs. In addition, we characterized the response of the isolated strains to different temperatures using chlorophyll fluorescence. T. asymmetrica did not modify their F-v/fm values with respect to temperature acclimation. In contrast, Trebouxia sp. `arnoldoi'and T. cretacea were more sensitive to changes in growing temperature decreasing Fv/fm at 17 degrees C. Our results indicate that B. zoharyi is flexible regarding the photobiont choice depending on the region, and suggest that bioclimatic factors could influence the myco/photobiont association patterns. | es_ES |
dc.description.sponsorship | Funding for field and laboratory work for this study was provided by the Ministerio de Economia y Competitividad (MINECO and FEDER, Spain) (CGL2016-79158-P) and Prometeo Excellence in Research Program (Generalitat Valenciana, Spain) (PROMETEOII/2013/021; PROMETEO/2017/039). Daniel Sheerin revised the English manuscript | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Symbiosis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Coexistence | es_ES |
dc.subject | Isolation | es_ES |
dc.subject | Microalgae | es_ES |
dc.subject | Photosynthesis | es_ES |
dc.subject | Symbiosis | es_ES |
dc.subject | Ultrastructure | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.title | Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zo-haryi from the Canary Islands. | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13199-020-00722-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2016-79158-P//Nueva perspectiva interdisciplinar sobre la complejidad de las simbiosis liquénicas: estudio genómico y funcional de microalgas y bacterias. SYMBIOLICHEN / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Consellería de Educación, Dirección General de Política Científica, Generalitat Valenciana//PROMETEOII%2F2013%2F021//Genoma de Trebouxia sp. TR9 como modelo de alga verde simbionte: caracterización, potencial metabólico y estructural. Implicaciones de la coexistencia con otros simbiontes en talos liquénicos y plantas soporte/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana. Conselleria d'Educacio, Investigació, Cultura y Esport//PROMETEO%2F2017%2F039//La simbiosis liquénica como asociación mutualista compleja, paradigma de resiliencia en ambientes adversos. Diversidad genómica, estructural y funcional./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Molins, A.; Chiva, S.; Calatayud, A.; Marco, F.; García-Breijo, F.; Reig-Arminana, J.; Carrasco, P.... (2020). Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zo-haryi from the Canary Islands. Symbiosis. 82(1-2):19-34. https://doi.org/10.1007/s13199-020-00722-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13199-020-00722-8 | es_ES |
dc.description.upvformatpinicio | 19 | es_ES |
dc.description.upvformatpfin | 34 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 82 | es_ES |
dc.description.issue | 1-2 | es_ES |
dc.relation.pasarela | S\423366 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana. Conselleria d'Educacio, Investigació, Cultura y Esport | es_ES |
dc.contributor.funder | Consellería de Educación, Dirección General de Política Científica, Generalitat Valenciana | es_ES |
dc.description.references | Alors D, Dal Grande F, Cubas P, Crespo A, Schmitt I, Molina MC, Divakar PK (2017) Panmixia and dispersal from the Mediterranean Basin to Macaronesian Islands of a macrolichen species. Sci Rep 7. https://doi.org/10.1038/srep40879 | es_ES |
dc.description.references | Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297 | es_ES |
dc.description.references | Aschenbrenner IA, Cardinale M, Berg G, Grube M (2014) Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens? Environ Microbiol 16:3743–3752 | es_ES |
dc.description.references | Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44:147–153 | es_ES |
dc.description.references | Bačkor M, Peksa O, Škaloud P, Bačkorová M (2010) Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotox Environ Safe 73:603–612 | es_ES |
dc.description.references | Barreno E (1994) Análisis fitogeográfico del elemento mediterráneo en líquenes. Studia Botanica 13:129–137 | es_ES |
dc.description.references | Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720 | es_ES |
dc.description.references | Beck A, Kasalicky T, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317–326 | es_ES |
dc.description.references | Beck A, Bechteler J, Casanova-Katny A, Dzhilyanova I (2019) The pioneer lichen Placopsis in maritime Antarctica: genetic diversity of their mycobionts and green algal symbionts, and their correlation with deglaciation time. Symbiosis 79:1–24 | es_ES |
dc.description.references | Bilger W, Björkman O (1991) Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 184:226–234 | es_ES |
dc.description.references | Bischoff HW, Bold HC (1963) Physiological studies: IV. Some soil algae from enchanted rock and related algal species. University of Texas: publications no. 6318 | es_ES |
dc.description.references | Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88:283–293 | es_ES |
dc.description.references | Bold HC (1949) The morphology of Chlamydomonas chlamydogama sp. Nov. B Torrey Bot Club 76:101–108 | es_ES |
dc.description.references | Calatayud A, Roca D, Martínez PF (2006) Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol Bioch 44:564–573 | es_ES |
dc.description.references | Cao S, Zhang F, Liu C, Hao Z, Tian Y, Zhu L, Zhou Q (2015) Distribution patterns of haplotypes for symbionts from Umbilicaria esculenta and U. muehlenbergii reflect the importance of reproductive strategy in shaping population genetic structure. BMC Microbiol 15:1–12 | es_ES |
dc.description.references | Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes. J Volcanol Geoth Res 60:225–241 | es_ES |
dc.description.references | Casano LM, del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, Del Hoyo A, Guéra A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818 | es_ES |
dc.description.references | Casares M, Llimona X (1983) Aportación al conocimiento de los líquenes calcícolas de la provincia de Granada. Collect Bot 14:221–230 | es_ES |
dc.description.references | Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552 | es_ES |
dc.description.references | Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, Grube M, Berg G (2017) Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome. 5:82. https://doi.org/10.1186/s40168-017-0303-5 | es_ES |
dc.description.references | Chiva S, Moya P, Molins A, Reig-Armiñana J, García-Breijo FJ, Barreno E (2016) Buellia zoharyi populations show noticeable microalgal diversity throughout their entire range of distribution. The 8th lAL symposium lichens in deep time. http://ial8.luomus.fi/wp-content/uploads/2014/09/IAL8_abstracts3007.pdf | es_ES |
dc.description.references | Chiva S, Garrido-Benavent I, Moya P, Molins A, Barreno E (2019) How did terricolous fungi originate in the Mediterranean region? A case study with a gypsicolous lichenized species. J Biogeogr 46:515–525 | es_ES |
dc.description.references | Clement MJ, Snell Q, Walker P, Posada D, Crandall KA (2002) TCS: estimating gene genealogies. Proceedings of the international parallel and distributed processing symposium. Brigham Young University, Provo, UT | es_ES |
dc.description.references | Crespo A, Barreno E (1975) Ensayo florístico y ecológico de la vegetación liquénica de los yesos del centro de España (Fulgensietalia desertori). Anal Inst Bot Cavanilles 32:873–908 | es_ES |
dc.description.references | Dal Grande F, Alors D, Divakar PK, Bálint M, Crespo A, Schmitt I (2014) Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. Mol Phylogenet Evol 72:54–60 | es_ES |
dc.description.references | Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I (2018) Environment and host identity structure communities of green algal symbionts in lichens. New Phytol 217:277–289 | es_ES |
dc.description.references | Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772 | es_ES |
dc.description.references | del Campo E, Casano LM, Gasulla F, Barreno E (2010a) Suitability of chloroplast LSU rDNA and its diverse group I introns for species recognition and phylogenetic analyses of lichen-forming Trebouxia algae. Mol Phylogenet Evol 54:437–444 | es_ES |
dc.description.references | del Campo EM, Gimeno J, Casano L, Gasulla F, García-Breijo F, Reig-Armiñana J, Barreno E (2010b) South european populations of Ramalina farinacea (L.) ach. Share different Trebouxia algae. Bibl Lichen 105:247–256 | es_ES |
dc.description.references | del Campo EM, Catalá S, Gimeno J, del Hoyo A, Martínez-Alberola F, Casano L, Grube M, Barreno E (2013) The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiol Ecol 83:310–323 | es_ES |
dc.description.references | del Hoyo A, Álvarez R, del Campo EM, Gasulla F, Barreno E, Casano LM (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot 107:109–118 | es_ES |
dc.description.references | Demmig-Adams B, Adams WW III, Barker D, Logan B, Bowing D, Verhoeven A (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264 | es_ES |
dc.description.references | Doering M, Piercey-Normore MD (2009) Genetically divergent algae shape an epiphytic lichen community on Jack pine in Manitoba. Lichenologist 41:69–80 | es_ES |
dc.description.references | Dupont A, Griffiths RI, Bell T, Bass D (2016) Differences in soil microÐeukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environ Microbiol 18:2010–2014 | es_ES |
dc.description.references | Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography−electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442 | es_ES |
dc.description.references | Etayo J (2011) Líquenes y hongos liquenícolas [de la Comunidad Autónoma] del País Vasco. Catálogo del año 2010. Ihobe Flora 6:1–87 | es_ES |
dc.description.references | Fernández-Mendoza F, Printzen C (2013) Pleistocene expansion of the bipolar lichen Cetraria aculeata into the southern hemisphere. Mol Ecol 22:1961–1983 | es_ES |
dc.description.references | Fernández-Palacios JM, Whittaker RJ (2008) The canaries: an important biogeographical meeting place. J Biogeogr 35:379–387 | es_ES |
dc.description.references | Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350 | es_ES |
dc.description.references | Friedl T (1989) Comparative ultrastructure of pyrenoids in Trebouxia (microthamniales, chlorophyta). Plant Syst Evol 164:145–159 | es_ES |
dc.description.references | Garrido-Benavent I, Ríos A, Fernández-Mendoza F, Pérez-Ortega S (2018) No need for stepping stones: direct, joint dispersal of the lichen-forming fungus Mastodia tessellata (Ascomycota) and its photobiont explains their bipolar distribution. J Biogeogr 45:213–224 | es_ES |
dc.description.references | Gasulla F, Guéra A, Barreno E (2010) A simple and rapid method for isolating lichen photobionts. Symbiosis 51:175–179 | es_ES |
dc.description.references | Gasulla F, Casano L, Guéra A (2019) Chlororespiration induces non-photochemical quenching of chlorophyll fluorescence during darkness in lichen chlorobionts. Physiol Plant 166:538–552 | es_ES |
dc.description.references | Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92 | es_ES |
dc.description.references | Giralt M, Van den Boom PPG (2011) The genus Buellia sl and some additional genera of Physciaceae in the Canary Islands. Nova Hedwigia 92:29–55 | es_ES |
dc.description.references | Gómez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talon M (2002) Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240 | es_ES |
dc.description.references | Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424 | es_ES |
dc.description.references | Gupta V, Kumar M, Brahmbhatt H, Reddy CRK, Seth A, Jha B (2011) Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid–liquid microextraction method. Plant Physiol Bioch 49:1259–1263 | es_ES |
dc.description.references | Gutiérrez-Carretero L, Casares-Porcel M (2011) Los líquenes de los afloramientos de yeso de la península ibérica. In: Mota JF, Sanchez P, Guirado JS (eds) Diversidad vegetal de las yeseras ibéricas. ADIF-Mediterraneo, Spain, pp 549–567 | es_ES |
dc.description.references | Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27:41–55 | es_ES |
dc.description.references | Hernández-Padrón CE, Pérez-Vargas I (2010) División lichenes y lichenicolous fungi. In: Arechavaleta M, Rodríguez S, Zurita N, García A (eds) Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). Consejería de Medio Ambiente y Ordenación Territorial Gobierno de Canarias, La Laguna, pp 63-87 | es_ES |
dc.description.references | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978 | es_ES |
dc.description.references | Hinojosa-Vidal E, Marco F, Martínez-Alberola F, Escaray FJ, García-Breijo FJ, Reig-Armiñana J, Carrasco P, Barreno E (2018) Characterization of the responses to saline stress in the symbiotic green microalga Trebouxia sp. TR9. Planta 248:1473–1486 | es_ES |
dc.description.references | Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780 | es_ES |
dc.description.references | Kristl J, Veber M, Krajničič B, Orešnik K, Slekovec M (2005) Determination of jasmonic acid in Lemna minor (L.) by liquid chromatography with fluorescence detection. Anal Bioanal Chem 383:886–893 | es_ES |
dc.description.references | Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645–660 | es_ES |
dc.description.references | Leavitt SD, Nelsen MP, Lumbsch HT, Johnson LA, St Clair LL (2013) Symbiont flexibility in subalpine rock shield lichen communities in the southwestern USA. Bryologist 116:149–161 | es_ES |
dc.description.references | Leavitt SD, Kraichak E, Nelsen MP, Altermann S, Divakar PK, Alors D, Esslinger TL, Crespo A, Lumbsch HT (2015) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol Ecol 24:3779–3797 | es_ES |
dc.description.references | Lindgren H, Velmala S, Högnabba F, Goward T, Holien H, Myllys L (2014) High fungal selectivity for algal symbionts in the genus Bryoria. Lichenologist 46:681–695 | es_ES |
dc.description.references | Lu J, Magain N, Miadlikowska J, Coyle JR, Truong C, Lutzoni F (2018) Bioclimatic factors at an intrabiome scale are more limiting than cyanobiont availability for the lichen-forming genus Peltigera. Am J Bot 105:1198–1211 | es_ES |
dc.description.references | Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp 1-8 | es_ES |
dc.description.references | Molins A, García-Breijo FJ, Reig-Armiñana J, del Campo EM, Casano LM, Barreno E (2013) Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum. Vieraea 41:349–370 | es_ES |
dc.description.references | Molins A, Moya P, García-Breijo FJ, Reig-Armiñana J, Barreno E (2018a) Molecular and morphological diversity of Trebouxia microalgae in sphaerothallioid Circinaria spp. lichens. J Phycol 54:494–504 | es_ES |
dc.description.references | Molins A, Moya P, García-Breijo FJ, Reig-Armiñana J, Barreno E (2018b) Assessing lichen microalgal diversity by a multi–tool approach: isolation, sanger sequencing, HTS and ultrastructural correlations. Lichenologist 50:123–138 | es_ES |
dc.description.references | Moya P, Škaloud P, Chiva S, García-Breijo FJ, Reig-Arminana J, Vančurová L, Barreno E (2015) Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems. Int J Syst Evol Micr 65:1838–1854 | es_ES |
dc.description.references | Moya P, Molins A, Martínez-Alberola F, Muggia L, Barreno E (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS One 12:e0175091. https://doi.org/10.1371/journal.pone.0175091 | es_ES |
dc.description.references | Moya P, Chiva S, Molins A, Jadrná I, Škaloud P, Peksa O, Barreno E (2018) Myrmecia israeliensis as the primary symbiotic microalga in squamulose lichens growing in European and Canary Island terricolous communities. Fottea 18:72–85 | es_ES |
dc.description.references | Moya P, Molins A, Chiva S, Bastida J, Barreno E (2020) Interaction patterns of symbiotic microalgae within biocrust lichen communities on harsh Iberian gypsum outcrops. Environ Microbiol. Acepted manuscript – under review | es_ES |
dc.description.references | Muggia L, Grube M (2018) Fungal diversity in lichens: from extremotolerance to interactions with algae. Life. 8. https://doi.org/10.3390/life8020015 | es_ES |
dc.description.references | Muggia L, Zellnig G, Rabensteiner J, Grube M (2010) Morphological and phylogenetic study of algal partners associated with the lichen-forming fungus Tephromela atra from the Mediterranean region. Symbiosis 51:149–160 | es_ES |
dc.description.references | Muggia L, Vancurova L, Škaloud P, Peksa O, Wedin M, Grube M (2013) The symbiotic playground of lichen thalli–a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol Ecol 85:313–323 | es_ES |
dc.description.references | Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M (2014) Phycobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot 114:463–475 | es_ES |
dc.description.references | Muggia L, Leavitt S, Barreno E (2016) Report of the meeting of the Trebouxia-working group, Trieste, Italy. International lichenological newsletter 49:35–37 | es_ES |
dc.description.references | Muggia L, Nelsen M, Kirika PM, Barreno E, Beck A, Lindgren H, Lumbsch HT, Leavitt SD, Trebouxia working group (2020) A phylogenetic overview on the diversity of the predominant lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta). Mol Phyl Evol 149:106821. https://doi.org/10.1016/j.ympev.2020.106821 | es_ES |
dc.description.references | Ohmura Y, Kawachi M, Kasai F, Watanabe MM, Takeshita S (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109:43–59 | es_ES |
dc.description.references | Ohmura Y, Takeshita S, Kawachi M (2018) Photobiont diversity within populations of a vegetatively reproducing lichen, Parmotrema tinctorum, can be generated by photobiont switching. Symbiosis 77:59–72 | es_ES |
dc.description.references | Osmond CB, Ramus J, Levavasseur G, Franklin LA, Henley WJ (1993) Fluorescence quenching during photosynthesis and photoinhibition of Ulva rotundata Blid. Planta 190:97–106 | es_ES |
dc.description.references | Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and F′v / F′m without measuring F′o. Photosynth Res 54(135):142 | es_ES |
dc.description.references | Papageorgiou GC, Govindjee (2014) The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: Definitions, timelines, viewpoints, open questions. In: Demmig-Adams B, Garab G, Adams WW III, Govindjee (eds) Nonphotochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration Vol. 40. Springer, Berlin-Heidelberg-New York, pp 1–44 | es_ES |
dc.description.references | Paul F, Otte J, Schmitt I, Dal Grande F (2018) Comparing sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens. Sci Rep 8:8624. https://doi.org/10.1038/s41598-018-26947-8 | es_ES |
dc.description.references | Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20:3936–3948 | es_ES |
dc.description.references | Pichler G, Stöggl W, Candotto Carniel F, Muggia L, Ametrano CG, Holzinger A, Tretiach M, Kranner I (2020) Abundance and extracellular release of phytohormones in aeroterrestrial microalgae (Trebouxiophyceae, Chlorophyta) as a potential chemical signalling source. J Phycol. https://doi.org/10.1111/jpy.13032 | es_ES |
dc.description.references | Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490–1498 | es_ES |
dc.description.references | Rambaut A (2014) FigTree 1.4.2 software. Institute of Evolutionary Biology, Univ.Edinburgh | es_ES |
dc.description.references | Rohácek K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and natural relationships. Photosynthetica 40:13–29 | es_ES |
dc.description.references | Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic peninsula. Mol Biol Evol 19:1209–1217 | es_ES |
dc.description.references | Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542 | es_ES |
dc.description.references | Roux C, Poumarat S (2015) Découverte de Buellia patouillardii (Hue) Zahlbr. (syn. Buellia zoharyi Galun) dans les Bouches-du-Rhône (Provence, France). Bull Ass Fr Lichénologie 40:11–20 | es_ES |
dc.description.references | Sadowsky A, Ott S (2012) Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis 58:81–90 | es_ES |
dc.description.references | Sanders WB, Lücking R (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol 155:425–435 | es_ES |
dc.description.references | Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62 | es_ES |
dc.description.references | Sierra MA, Danko DC, Sandoval TA, Pishchany G, Moncada B, Kolter R, Mason CE, Zambrano MM (2020) The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.00398 | es_ES |
dc.description.references | Singh G, Dal Grande F, Schnitzler J, Pfenninger M, Schmitt I (2018) Different diversification histories in tropical and temperate lineages in the ascomycete subfamily Protoparmelioideae (Parmeliaceae). Mycokeys 36:1–19 | es_ES |
dc.description.references | Škaloud P, Moya P, Molins A, Peksa O, Santos-Guerra A, Barreno E (2018) Untangling the hidden intrathalline microalgal diversity in Parmotrema pseudotinctorum: Trebouxia crespoana sp. nov. Lichenologist 50:357–369 | es_ES |
dc.description.references | Smith H, Dal Grande F, Muggia L, Keuler R, Divakar PK, Grewe F, Schmitt I, Lumbsch HT, Leavitt SD (2020) Metagenomic data reveal diverse fungal and algal communities associated with the lichen symbiosis. BioRxiv. https://doi.org/10.1101/2020.03.04.966853 | es_ES |
dc.description.references | Spribille T (2018) Relative symbiont input and the lichen symbiotic outcome. Curr Opin Plant Biol 44:57–63 | es_ES |
dc.description.references | Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313 | es_ES |
dc.description.references | Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771 | es_ES |
dc.description.references | Steinová J, Škaloud P, Yahr R, Bestová H, Muggia L (2019) Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in Cladonia lichens. Mol Phylogenet Evol 134:226–237 | es_ES |
dc.description.references | Trinkaus U, Mayrhofer H (2000) Revision der Buellia epigaea-Gruppe (lichenisierte Ascomyceten, Physciaceae). I. Die Arten der Nordhemisphare. Nova Hedwigia 71:271–314 | es_ES |
dc.description.references | Ueda J, Miyamoto K, Aoki M, Hirata T, Sato T, Momotani Y (1991) Identification of Jasmonic acid in Chlorella and Spirulina. Bull Univ Osaka Prefect Ser B, Agric Biol 43:103–108 | es_ES |
dc.description.references | Van den Boom PPG, Etayo J (2006) New records of lichens and lichenicolous fungi from Fuerteventura (Canary Islands), with descriptions of some new species. Cryptogamie Mycol 27:341–374 | es_ES |
dc.description.references | Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150 | es_ES |
dc.description.references | Vančurová L, Peksa O, Němcová Y, Škaloud P (2015) Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa 219:118–132 | es_ES |
dc.description.references | Wang X, Zhao P, Liu X, Chen J, Xu J, Chen H, Yan X (2014) Quantitative profiling method for phytohormones and betaines in algae by liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 28:275–280 | es_ES |
dc.description.references | Werth S, Sork VL (2014) Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. Am J Bot 101:1127–1140 | es_ES |
dc.description.references | White TJ, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Snisky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322 | es_ES |
dc.description.references | Yokoya NS, Stirk WA, Van Staden J, Novák O, Turečková V, Pěnčí KA, Strnad M (2010) Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol 46:1198–1205 | es_ES |