Mostrar el registro sencillo del ítem
dc.contributor.author | Nieto-del-Amor, Félix | es_ES |
dc.contributor.author | Ye Lin, Yiyao | es_ES |
dc.contributor.author | Garcia-Casado, Javier | es_ES |
dc.contributor.author | Díaz-Martínez, María del Alba | es_ES |
dc.contributor.author | González Martínez, María | es_ES |
dc.contributor.author | Monfort-Ortiz, R. | es_ES |
dc.contributor.author | Prats-Boluda, Gema | es_ES |
dc.date.accessioned | 2021-11-19T10:56:20Z | |
dc.date.available | 2021-11-19T10:56:20Z | |
dc.date.issued | 2021-02-13 | es_ES |
dc.identifier.isbn | 978-989-758-490-9 | es_ES |
dc.identifier.issn | 2184-4305 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/177289 | |
dc.description.abstract | [EN] Although preterm labor is a major cause of neonatal death and often leaves health sequels in the survivors, there are no accurate and reliable clinical tools for preterm labor prediction. The Electrohysterogram (EHG) has arisen as a promising alternative that provides relevant information on uterine activity that could be useful in predicting preterm labor. In this work, we optimized and assessed the performance of the Dispersion Entropy (DispEn) metric and compared it to conventional Sample Entropy (SampEn) in EHG recordings to discriminate term from preterm deliveries. For this, we used the two public databases TPEHG and TPEHGT DS of EHG recordings collected from women during regular checkups. The 10th, 50th and 90th percentiles of entropy metrics were computed on whole (WBW) and fast wave high (FWH) EHG bandwidths, sweeping the DispEn and SampEn internal parameters to optimize term/preterm discrimination. The results revealed that for both the FWH and WBW bandwidths the best separability was reached when computing the 10th percentile, achieving a p-value (0.00007) for DispEn in FWH, c = 7 and m = 2, associated with lower complexity preterm deliveries, indicating that DispEn is a promising parameter for preterm labor prediction. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish ministry of economy and competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and the Generalitat Valenciana (AICO/2019/220). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SCITEPRESS | es_ES |
dc.relation.ispartof | Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, Volume 4: BIOSIGNALS | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dispersion entropy | es_ES |
dc.subject | Sample entropy | es_ES |
dc.subject | Preterm birth | es_ES |
dc.subject | Electrohysterography | es_ES |
dc.subject | EHG | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Dispersion Entropy: A Measure of Electrohysterographic Complexity for Preterm Labor Discrimination | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.5220/0010316602600267 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094449-A-I00/ES/ELECTROHISTEROGRAFIA PARA LA MEJORA EN LA TOMA DE DECISIONES EN SITUACIONES DE RIESGO EN OBSTETRICIA: PARTO PREMATURO E INDUCCION DEL PARTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///AICO%2F2019%2F220//DESARROLLO DE HERRAMIENTAS DE USO CLINICO PARA LA PREDICCION DEL PARTO PREMATURO EN BASE A LA ELECTROHISTEROGRAFIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Nieto-Del-Amor, F.; Ye Lin, Y.; Garcia-Casado, J.; Díaz-Martínez, MDA.; González Martínez, M.; Monfort-Ortiz, R.; Prats-Boluda, G. (2021). Dispersion Entropy: A Measure of Electrohysterographic Complexity for Preterm Labor Discrimination. SCITEPRESS. 260-267. https://doi.org/10.5220/0010316602600267 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 14th International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS 2021) | es_ES |
dc.relation.conferencedate | Febrero 11-13,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.5220/0010316602600267 | es_ES |
dc.description.upvformatpinicio | 260 | es_ES |
dc.description.upvformatpfin | 267 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\430041 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |