Mostrar el registro sencillo del ítem
dc.contributor.author | Iranzo-Sánchez, Javier | es_ES |
dc.contributor.author | Giménez Pastor, Adrián | es_ES |
dc.contributor.author | Silvestre Cerdà, Joan Albert | es_ES |
dc.contributor.author | Baquero-Arnal, Pau | es_ES |
dc.contributor.author | Civera Saiz, Jorge | es_ES |
dc.contributor.author | Juan, Alfons | es_ES |
dc.date.accessioned | 2021-11-25T07:55:03Z | |
dc.date.available | 2021-11-25T07:55:03Z | |
dc.date.issued | 2020-11-20 | es_ES |
dc.identifier.isbn | 978-1-952148-60-6 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/177537 | |
dc.description.abstract | [EN] The cascade approach to Speech Translation (ST) is based on a pipeline that concatenates an Automatic Speech Recognition (ASR) system followed by a Machine Translation (MT) system. These systems are usually connected by a segmenter that splits the ASR output into, hopefully, semantically self-contained chunks to be fed into the MT system. This is specially challenging in the case of streaming ST, where latency requirements must also be taken into account. This work proposes novel segmentation models for streaming ST that incorporate not only textual, but also acoustic information to decide when the ASR output is split into a chunk. An extensive and thorough experimental setup is carried out on the Europarl-ST dataset to prove the contribution of acoustic information to the performance of the segmentation model in terms of BLEU score in a streaming ST scenario. Finally, comparative results with previous work also show the superiority of the segmentation models proposed in this work. | es_ES |
dc.description.sponsorship | The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 761758 (X5Gon); the Government of Spain's research project Multisub, ref. RTI2018- 094879-B-I00 (MCIU/AEI/FEDER,EU), the Generalitat Valenciana's research project Classroom Activity Recognition, ref. PROMETEO/2019/111., FPU scholarship FPU18/04135; and the Generalitat Valencianas predoctoral research scholarship ACIF/2017/055. The authors wish to thank the anonymous reviewers for their criticisms and suggestions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Association for Computational Linguistics | es_ES |
dc.relation.ispartof | Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | BIBLIOTECONOMIA Y DOCUMENTACION | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Direct Segmentation Models for Streaming Speech Translation | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094879-B-I00/ES/SUBTITULACION MULTILINGUE DE CLASES DE AULA Y SESIONES PLENARIAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//FPU18%2F04135//AYUDA PREDOCTORAL FPU-IRANZO SANCHEZ. PROYECTO: NOVEL CONTRIBUTIONS TO NEURAL SPEECH TRANSLATION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/761758/EU/X5gon: Cross Modal, Cross Cultural, Cross Lingual, Cross Domain, and Cross Site Global OER Network/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F055//AYUDA PREDOCTORAL CONSELLERIA-BAQUERO ARNAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PROMETEO%2F2019%2F111//CLASSROOM ACTIVITY RECOGNITION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Iranzo-Sánchez, J.; Giménez Pastor, A.; Silvestre Cerdà, JA.; Baquero-Arnal, P.; Civera Saiz, J.; Juan, A. (2020). Direct Segmentation Models for Streaming Speech Translation. Association for Computational Linguistics. 2599-2611. http://hdl.handle.net/10251/177537 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | Conference on Empirical Methods in Natural Language Processing (EMNLP 2020) | es_ES |
dc.relation.conferencedate | Noviembre 16-20,2020 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://aclanthology.org/volumes/2020.emnlp-main/ | es_ES |
dc.description.upvformatpinicio | 2599 | es_ES |
dc.description.upvformatpfin | 2611 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\422411 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |