- -

Direct Segmentation Models for Streaming Speech Translation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Direct Segmentation Models for Streaming Speech Translation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Iranzo-Sánchez, Javier es_ES
dc.contributor.author Giménez Pastor, Adrián es_ES
dc.contributor.author Silvestre Cerdà, Joan Albert es_ES
dc.contributor.author Baquero-Arnal, Pau es_ES
dc.contributor.author Civera Saiz, Jorge es_ES
dc.contributor.author Juan, Alfons es_ES
dc.date.accessioned 2021-11-25T07:55:03Z
dc.date.available 2021-11-25T07:55:03Z
dc.date.issued 2020-11-20 es_ES
dc.identifier.isbn 978-1-952148-60-6 es_ES
dc.identifier.uri http://hdl.handle.net/10251/177537
dc.description.abstract [EN] The cascade approach to Speech Translation (ST) is based on a pipeline that concatenates an Automatic Speech Recognition (ASR) system followed by a Machine Translation (MT) system. These systems are usually connected by a segmenter that splits the ASR output into, hopefully, semantically self-contained chunks to be fed into the MT system. This is specially challenging in the case of streaming ST, where latency requirements must also be taken into account. This work proposes novel segmentation models for streaming ST that incorporate not only textual, but also acoustic information to decide when the ASR output is split into a chunk. An extensive and thorough experimental setup is carried out on the Europarl-ST dataset to prove the contribution of acoustic information to the performance of the segmentation model in terms of BLEU score in a streaming ST scenario. Finally, comparative results with previous work also show the superiority of the segmentation models proposed in this work. es_ES
dc.description.sponsorship The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 761758 (X5Gon); the Government of Spain's research project Multisub, ref. RTI2018- 094879-B-I00 (MCIU/AEI/FEDER,EU), the Generalitat Valenciana's research project Classroom Activity Recognition, ref. PROMETEO/2019/111., FPU scholarship FPU18/04135; and the Generalitat Valencianas predoctoral research scholarship ACIF/2017/055. The authors wish to thank the anonymous reviewers for their criticisms and suggestions. es_ES
dc.language Inglés es_ES
dc.publisher Association for Computational Linguistics es_ES
dc.relation.ispartof Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification BIBLIOTECONOMIA Y DOCUMENTACION es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Direct Segmentation Models for Streaming Speech Translation es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094879-B-I00/ES/SUBTITULACION MULTILINGUE DE CLASES DE AULA Y SESIONES PLENARIAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//FPU18%2F04135//AYUDA PREDOCTORAL FPU-IRANZO SANCHEZ. PROYECTO: NOVEL CONTRIBUTIONS TO NEURAL SPEECH TRANSLATION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/761758/EU/X5gon: Cross Modal, Cross Cultural, Cross Lingual, Cross Domain, and Cross Site Global OER Network/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F055//AYUDA PREDOCTORAL CONSELLERIA-BAQUERO ARNAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///PROMETEO%2F2019%2F111//CLASSROOM ACTIVITY RECOGNITION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Iranzo-Sánchez, J.; Giménez Pastor, A.; Silvestre Cerdà, JA.; Baquero-Arnal, P.; Civera Saiz, J.; Juan, A. (2020). Direct Segmentation Models for Streaming Speech Translation. Association for Computational Linguistics. 2599-2611. http://hdl.handle.net/10251/177537 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Conference on Empirical Methods in Natural Language Processing (EMNLP 2020) es_ES
dc.relation.conferencedate Noviembre 16-20,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://aclanthology.org/volumes/2020.emnlp-main/ es_ES
dc.description.upvformatpinicio 2599 es_ES
dc.description.upvformatpfin 2611 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\422411 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem