Bisegna, F., Ambrosini, D., Paoletti, D., Sfarra, S., & Gugliermetti, F. 2014. A qualitative method for combining thermal imprints to emerging weak points of ancient wall structures by passive infrared thermography - A case study. Journal of Cultural Heritage. https://doi.org/10.1016/j.culher.2013.03.006
Boarin, P., Bridging the gap between environmental sustainability and heritage preservation: towards a certified sustainable conservation, adaptation and retrofitting of historic buildings, in: J. Zuo, L. Daniel, V. Soebarto (Eds.), Fifty Years Later Revisiting Role Archit. Sci. Des. Pract. 50th Int. Conf. Archit. Sci. Assoc. 2016, School of Architecture and Built Environment, The University of Adelaide, Adelaide, Australia, 2016: pp. 675-684.
D'Agostino, D. 2013. Moisture dynamics in an historic masonry structure: The Cathedra lof Lecee (South Italy). Building and Environment. https://doi.org/10.1016/j.buildenv.2013.02.008
[+]
Bisegna, F., Ambrosini, D., Paoletti, D., Sfarra, S., & Gugliermetti, F. 2014. A qualitative method for combining thermal imprints to emerging weak points of ancient wall structures by passive infrared thermography - A case study. Journal of Cultural Heritage. https://doi.org/10.1016/j.culher.2013.03.006
Boarin, P., Bridging the gap between environmental sustainability and heritage preservation: towards a certified sustainable conservation, adaptation and retrofitting of historic buildings, in: J. Zuo, L. Daniel, V. Soebarto (Eds.), Fifty Years Later Revisiting Role Archit. Sci. Des. Pract. 50th Int. Conf. Archit. Sci. Assoc. 2016, School of Architecture and Built Environment, The University of Adelaide, Adelaide, Australia, 2016: pp. 675-684.
D'Agostino, D. 2013. Moisture dynamics in an historic masonry structure: The Cathedra lof Lecee (South Italy). Building and Environment. https://doi.org/10.1016/j.buildenv.2013.02.008
Grinzato, E., Cadelano, G. & Bison, P. 2010. Moisture map by IR thermography, Journal of Modern Optics, 57:18. https://doi.org/10.1080/09500341003731597
ISO Standard. 2012. ISO 7726. Ergonomics of the thermal environment. Instruments for measuring physical quantities, Internation Organization for Standarization.
Lankester, P. and Brimblecombe, P. 2012. The impact of future climate on historic interiors. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2011.12.026
Lawrence Berkeley National Laboratory, 2021. THERM https://windows.lbl.gov/software/therm, Date accessed: September 11,.
Martinez-Garrido, M.I., Aparicio, S., Fort, R., Anaya, J.J., and Izquierdo, M.A.G. 2013. Effect of solar radiation and humidity on the inner core of walls in historic buildings. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2013.10.068
Martinez-Molina, A., Tort-Ausina, I., Cho, S., & Vivancos, J.-L. 2016. Energy efficiency and thermal comfort in historic buildings: A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.03.018
Martins, A.M.T., Carlos, J.S., 2014. The retrofitting of the Bernardas' Convent in Lisbon, Energy Build. 68, 396-402. https://doi.org/10.1016/j.enbuild.2013.07.087
Moradias, P.A., Silva, P.D., Castro-Gomes, J.P., Salazar, M.V., and Pires, L. 2012. Experimental study on hygrothermal behavior of retrofit solutions applied to old building walls. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2012.04.138
National Weather Service. "San Antonio Climate Summary" (PDF). Consultat el 5 d'octubre, 2021.
Srithongchai, T., Gadi, M.B. 2018. People's adaptation to thermal conditions inside buildings for religious practice, Build. Environ. 185, 107115. https://doi.org/10.1016/j.buildenv.2020.107115
Surfer® Golden Software, LLC., SURFER https://www.goldensoftware.com/products/surfer, Date accessed: September 11, 2021.
Torres, I. and Peixoto de Freitas, V. 2010. The influence of the thickness of the walls and their properties on the treatment of rising damp in historic buildings. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2010.01.004
U.S. Department of the Interior. n.d.. Mission Nuestra Señora de la Purísima Concepción de Acuña. Retrieved from https://www.nps.gov/subjects/travelspanishmissions/mission-nuestra-senora-de-la-purisima-concepcion-de-acuna.htm
Valero, L. R., Sasso, V. F., & Vicioso, E. P. 2019. In situ assessment of superficial moisture condition in façades of historic building using non-destructive techniques. Case Studies in Construction Materials.
Varas-Muriel, M.J., Martínez-Garrido, M.I., Fort, R., 2014, Monitoring the thermal-hygrometric conditions induced by traditional heating systems in a historic Spanish church (12th-16th C), Energy Build. 75, 119-132. https://doi.org/10.1016/j.enbuild.2014.01.049
Williamson, Kelsey, Antonio Martinez-Molina i William Dupont "In Situ Assessment of Superficial Moisture Content in Façades of a UNESCO World Heritage Church Using Electrical Resistance Measuring (ERM). The Impact of the HVAC System." En APT & National Trust Joint Conference, Edmonton, Canada (2020).
[-]