- -

Support Vector Regression Machine Learning Tool to Predict GNSS Clock Corrections in Real-Time PPP Technique

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Support Vector Regression Machine Learning Tool to Predict GNSS Clock Corrections in Real-Time PPP Technique

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Qafisheh, Mutaz Wajeh Abdlmajid es_ES
dc.contributor.author Martín Furones, Ángel Esteban es_ES
dc.contributor.author Torres-Sospedra, Joaquín es_ES
dc.date.accessioned 2021-12-20T08:39:00Z
dc.date.available 2021-12-20T08:39:00Z
dc.date.issued 2020-06-04 es_ES
dc.identifier.issn 1613-0073 es_ES
dc.identifier.uri http://hdl.handle.net/10251/178545
dc.description.abstract [EN] Real-time Precise Point Positioning (PPP) can provide the Global Navigation Satellites Systems (GNSS) users with the ability to determine their position accurately using only one GNSS receiver. The PPP solution does not rely on a base receiver or local GNSS network. However, for establishing a real-time PPP solution, the GNSS users are required to receive the Real-Time Service (RTS) message over the Network Transported of RTCM via Internet Protocol (NTRIP). The RTS message includes orbital, code biases, and clock corrections. GNSS users receive those corrections produced by the analysis center with some latency, which degraded the quality of coordinates obtained through realtime PPP. In this research, we investigate the Support Vector Machine (SVR) machine learning tool to overcome the latency for clock corrections in the IGS03 product. Three days of continuous GNSS observations at BREST permanent station in France were selected as a case study. BNC software was used to generate clock corrections files. Taking as reference the clock correction values without latency. The SVR solution shows a reduction in the standard deviation and range with about 30% and 20%, respectively, in comparison to the latency solution for all satellites except those satellites in GLONASS M block. es_ES
dc.language Inglés es_ES
dc.publisher CEUR Workshop Proceedings es_ES
dc.relation.ispartof Proceedings of the International Conference on Localization and GNSS (ICL-GNSS 2020) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Real-time precise point positioning es_ES
dc.subject Latency es_ES
dc.subject Support vector regression es_ES
dc.subject Clock corrections prediction es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Support Vector Regression Machine Learning Tool to Predict GNSS Clock Corrections in Real-Time PPP Technique es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Qafisheh, MWA.; Martín Furones, ÁE.; Torres-Sospedra, J. (2020). Support Vector Regression Machine Learning Tool to Predict GNSS Clock Corrections in Real-Time PPP Technique. CEUR Workshop Proceedings. 1-8. http://hdl.handle.net/10251/178545 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Conference on Localization and GNSS (ICL-GNSS 2020) es_ES
dc.relation.conferencedate Junio 02-04,2020 es_ES
dc.relation.conferenceplace Tampere, Finland es_ES
dc.relation.publisherversion http://www.ceur-ws.org/Vol-2626/ es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\414508 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem