Mostrar el registro sencillo del ítem
dc.contributor.author | Huerta, Alvaro | es_ES |
dc.contributor.author | Martinez-Rodrigo, Arturo | es_ES |
dc.contributor.author | Arias, Miguel A. | es_ES |
dc.contributor.author | Langley, Philip | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.contributor.author | Alcaraz, Raul | es_ES |
dc.date.accessioned | 2021-12-20T08:39:19Z | |
dc.date.available | 2021-12-20T08:39:19Z | |
dc.date.issued | 2020-09-16 | es_ES |
dc.identifier.issn | 2325-887X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/178566 | |
dc.description.abstract | [EN] In the last years, atrial fibrillation (AF) has become one of the most remarkable health problems in the developed world. This arrhythmia is associated with an increased risk of cardiovascular events, being its early detection an unresolved challenge. To palliate this issue, long-term wearable electrocardiogram (ECG) recording systems are used, because most of AF episodes are asymptomatic and very short in their initial stages. Unfortunately, portable equipments are very susceptible to be contaminated with different kind of noises, since they work in highly dynamics and ever-changing environments. Within this scenario, the correct identification of free-noise ECG segments results critical for an accurate and robust AF detection. Hence, this work presents a deep learning-based algorithm to identify high-quality intervals in single-lead ECG recordings obtained from patients with paroxysmal AF. The obtained results have provided a remarkable ability to classify between high- and low-quality ECG segments about 92%, only misclassifying around 7% of clean AF intervals as noisy segments. These outcomes have overcome most previous ECG quality assessment algorithms also dealing with AF signals by more than 20%. | es_ES |
dc.description.sponsorship | This research has been supported by the grants DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha, AICO/2019/036 from Generalitat Valenciana and FEDER 2018/11744. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | Computing in Cardiology 2020; Vol 47 | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Application of Deep Learning for Quality Assessment of Atrial Fibrillation ECG Recordings | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.22489/CinC.2020.367 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Huerta, A.; Martinez-Rodrigo, A.; Arias, MA.; Langley, P.; Rieta, JJ.; Alcaraz, R. (2020). Application of Deep Learning for Quality Assessment of Atrial Fibrillation ECG Recordings. IEEE. 1-4. https://doi.org/10.22489/CinC.2020.367 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 47th Computing in Cardiology Conference (CinC 2020) | es_ES |
dc.relation.conferencedate | Septiembre 13-16,2020 | es_ES |
dc.relation.conferenceplace | Rimini, Italia | es_ES |
dc.relation.publisherversion | https://doi.org/10.22489/CinC.2020.367 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\433024 | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |