Mostrar el registro completo del ítem
Huerta, A.; Martinez-Rodrigo, A.; Rieta, JJ.; Alcaraz, R. (2020). A Deep Learning Solution for Automatized Interpretation of 12-Lead ECGs. IEEE. 1-4. https://doi.org/10.22489/CinC.2020.305
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/178571
Título: | A Deep Learning Solution for Automatized Interpretation of 12-Lead ECGs | |
Autor: | Huerta, Alvaro Martinez-Rodrigo, Arturo Alcaraz, Raúl | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] A broad variety of algorithms for detection and classification of rhythm and morphology abnormalities in ECG
recordings have been proposed in the last years. Although some of them have reported very promising ...[+]
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.22489/CinC.2020.305 | |
Título del congreso: |
|
|
Lugar del congreso: |
|
|
Fecha congreso: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
This research has been supported by the grants DPI2017¿83952¿C3 from MINECO/AEI/FEDER EU,
SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha, AICO/2019/036 from Generalitat Valenciana and FEDER 2018/11744[+]
|
|
Tipo: |
|