- -

Classification of UAV-based photogrammetric point clouds of riverine species using machine learning algorithms: a case study in the Palancia river, Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classification of UAV-based photogrammetric point clouds of riverine species using machine learning algorithms: a case study in the Palancia river, Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carbonell-Rivera, Juan Pedro es_ES
dc.contributor.author Estornell Cremades, Javier es_ES
dc.contributor.author Ruiz Fernández, Luis Ángel es_ES
dc.contributor.author Torralba, Jesús es_ES
dc.contributor.author Crespo-Peremarch, P. es_ES
dc.date.accessioned 2021-12-27T08:37:16Z
dc.date.available 2021-12-27T08:37:16Z
dc.date.issued 2020-09-02 es_ES
dc.identifier.issn 2194-9034 es_ES
dc.identifier.uri http://hdl.handle.net/10251/178903
dc.description.abstract [EN] The management of riverine areas is fundamental due to their great environmental importance. The fast changes that occur in these areas due to river mechanics and human pressure makes it necessary to obtain data with high temporal and spatial resolution. This study proposes a workflow to map riverine species using Unmanned Aerial Vehicle (UAV) imagery. Based on RGB point clouds, our work derived simple geometric and spectral metrics to classify an area of the public hydraulic domain of the river Palancia (Spain) in five different classes: Tamarix gallica L. (French tamarisk), Pinus halepensis Miller (Aleppo pine), Arundo donax L. (giant reed), other riverine species and ground. A total of six Machine Learning (ML) methods were evaluated: Decision Trees, Extra Trees, Multilayer Perceptron, K-Nearest Neighbors, Random Forest and Ridge. The method chosen to carry out the classification was Random Forest, which obtained a mean score cross-validation close to 0.8. Subsequently, an object-based reclassification was done to improve this result, obtaining an overall accuracy of 83.6%, and individually a producer¿s accuracy of 73.8% for giant reed, 87.7% for Aleppo pine, 82.8% for French tamarisk, 93.5% for ground and 80.1% for other riverine species. Results were promising, proving the feasibility of using this cost-effective method for periodic monitoring of riverine species. In addition, the proposed workflow is easily transferable to other tasks beyond riverine species classification (e.g., green areas detection, land cover classification) opening new opportunities in the use of UAVs equipped with consumer cameras for environmental applications. es_ES
dc.language Inglés es_ES
dc.publisher ISPRS es_ES
dc.relation.ispartof XXIV Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS 2020) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Point cloud classification es_ES
dc.subject UAV es_ES
dc.subject Structure from Motion es_ES
dc.subject Random forest es_ES
dc.subject Riverine species es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Classification of UAV-based photogrammetric point clouds of riverine species using machine learning algorithms: a case study in the Palancia river, Spain es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/isprs-archives-XLIII-B2-2020-659-2020 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Carbonell-Rivera, JP.; Estornell Cremades, J.; Ruiz Fernández, LÁ.; Torralba, J.; Crespo-Peremarch, P. (2020). Classification of UAV-based photogrammetric point clouds of riverine species using machine learning algorithms: a case study in the Palancia river, Spain. ISPRS. 659-666. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-659-2020 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename XXIV Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS 2020) es_ES
dc.relation.conferencedate Agosto 31-Septiembre 02,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-659-2020 es_ES
dc.description.upvformatpinicio 659 es_ES
dc.description.upvformatpfin 666 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\419247 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem