dc.contributor.author |
Martí Gimeno, Pasqual
|
es_ES |
dc.contributor.author |
Jordán, Jaume
|
es_ES |
dc.contributor.author |
Palanca Cámara, Javier
|
es_ES |
dc.contributor.author |
Julian Inglada, Vicente Javier
|
es_ES |
dc.date.accessioned |
2021-12-27T08:37:20Z |
|
dc.date.available |
2021-12-27T08:37:20Z |
|
dc.date.issued |
2020-10-09 |
es_ES |
dc.identifier.isbn |
978-3-030-51999-5 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/178907 |
|
dc.description.abstract |
[EN] To ensure cities sustainability, we must deal with, among other challenges, traffic congestion, and its associated carbon emissions. We can approach such a problem from two perspectives: the transition to electric vehicles, which implies the need for charging station infrastructure, and the optimization of traffic flow. However, cities are complex systems, so it is helpful to test changes on them in controlled environments like the ones provided by simulators. In our work, we use SimFleet, an agent-based fleet simulator. Nevertheless, SimFleet does not provide tools for easily setting up big experiments, neither to simulate the realistic movement of its agents inside a city. Aiming to solve that, we enhanced SimFleet introducing two fully configurable generators that automatize the creation of experiments. First, the charging stations generator, which allocates a given amount of charging stations following a certain distribution, enabling to simulate how transports would charge and compare distributions. Second, the load generator, which populates the experiment with a given number of agents of a given type, introducing them dynamically in the simulation, and assigns them a movement that can be either random or based on real city data. The generators proved to be useful for comparing different distributions of charging stations as well as different agent behaviors over the same complex setup. |
es_ES |
dc.description.sponsorship |
This work was partially supported by MINECO/FEDER RTI2018-095390-B-C31 project of the Spanish government. Pasqual Martí and Jaume Jordán are funded by UPV PAID-06-18 project. Jaume Jordán is also funded by grant APOSTD/2018/010 of Generalitat Valenciana - Fondo Social Europeo. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer |
es_ES |
dc.relation.ispartof |
Highlights in Practical Applications of Agents, Multi-Agent Systems, and Trust-worthiness. The PAAMS Collection |
es_ES |
dc.relation.ispartofseries |
Communications in Computer and Information Science;1233 |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Multi-agent system |
es_ES |
dc.subject |
Simulation |
es_ES |
dc.subject |
Transportation |
es_ES |
dc.subject |
Electric vehicle |
es_ES |
dc.subject |
Smart city |
es_ES |
dc.subject |
Urban fleets |
es_ES |
dc.subject.classification |
LENGUAJES Y SISTEMAS INFORMATICOS |
es_ES |
dc.subject.classification |
CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL |
es_ES |
dc.title |
Load Generators for Automatic Simulation of Urban Fleets |
es_ES |
dc.type |
Comunicación en congreso |
es_ES |
dc.type |
Capítulo de libro |
es_ES |
dc.identifier.doi |
10.1007/978-3-030-51999-5_33 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/UPV//PAID-06-18/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement///APOSTD%2F2018%2F010//CONTRATACION DE INVESTIGADOR POSTDOCTORAL GVA-JORDAN PRUNERA. PROYECTO: TECNOLOGIAS INTELIGENTES PARA OPTIMIZACION DE FLOTAS URBANAS DE VEHICULOS ELECTRICOS. / |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/UPV-VIN//SP20180184//Técnicas inteligentes para optimización de la localización de estaciones de recarga de vehículos
eléctricos y mejora de la movilidad en ciudades/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI//RTI2018-095390-B-C31-AR//HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació |
es_ES |
dc.description.bibliographicCitation |
Martí Gimeno, P.; Jordán, J.; Palanca Cámara, J.; Julian Inglada, VJ. (2020). Load Generators for Automatic Simulation of Urban Fleets. Springer. 394-405. https://doi.org/10.1007/978-3-030-51999-5_33 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.conferencename |
18th International Conference on Practical Applications of Agents and Multiagent Systems (PAAMS 2020). Workshops |
es_ES |
dc.relation.conferencedate |
Octubre 07-09,2020 |
es_ES |
dc.relation.conferenceplace |
L'Aquila, Italy |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1007/978-3-030-51999-5_33 |
es_ES |
dc.description.upvformatpinicio |
394 |
es_ES |
dc.description.upvformatpfin |
405 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.relation.pasarela |
S\415781 |
es_ES |
dc.contributor.funder |
European Social Fund |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
Universitat Politècnica de València |
es_ES |
dc.description.references |
Campo, C.: Directory facilitator and service discovery agent. FIPA Document Repository (2002) |
es_ES |
dc.description.references |
Dong, J., Liu, C., Lin, Z.: Charging infrastructure planning for promoting battery electric vehicles: an activity-based approach using multiday travel data. Transp. Res. Part C: Emerg. Technol. 38, 44–55 (2014) |
es_ES |
dc.description.references |
Jordán, J., Palanca, J., Del Val, E., Julian, V., Botti, V.: A multi-agent system for the dynamic emplacement of electric vehicle charging stations. Appl. Sci. 8(2), 313 (2018) |
es_ES |
dc.description.references |
Noori, H.: Realistic urban traffic simulation as vehicular Ad-hoc network (VANET) via Veins framework. In: 2012 12th Conference of Open Innovations Association (FRUCT), pp. 1–7. IEEE (2012) |
es_ES |
dc.description.references |
Palanca, J., Terrasa, A., Carrascosa, C., Julián, V.: SimFleet: a new transport fleet simulator based on MAS. In: De La Prieta, F., et al. (eds.) PAAMS 2019. CCIS, vol. 1047, pp. 257–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24299-2_22 |
es_ES |
dc.description.references |
Skippon, S., Garwood, M.: Responses to battery electric vehicles: UK consumer attitudes and attributions of symbolic meaning following direct experience to reduce psychological distance. Transp. Res. Part D: Transp. Environ. 16(7), 525–531 (2011) |
es_ES |
dc.description.references |
del Val, E., Palanca, J., Rebollo, M.: U-tool: a urban-toolkit for enhancing city maps through citizens’ activity. In: Demazeau, Y., Ito, T., Bajo, J., Escalona, M.J. (eds.) PAAMS 2016. LNCS (LNAI), vol. 9662, pp. 243–246. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39324-7_22 |
es_ES |