Mostrar el registro sencillo del ítem
dc.contributor.author | Aparicio-Sánchez, Damián | es_ES |
dc.contributor.author | Escobar Román, Santiago | es_ES |
dc.contributor.author | Gutiérrez Gil, Raúl | es_ES |
dc.contributor.author | Sapiña-Sanchis, Julia | es_ES |
dc.date.accessioned | 2021-12-27T08:37:25Z | |
dc.date.available | 2021-12-27T08:37:25Z | |
dc.date.issued | 2020-09-18 | es_ES |
dc.identifier.isbn | 978-3-030-59012-3 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/178909 | |
dc.description.abstract | [EN] Maude-NPA is an analysis tool for cryptographic security protocols that takes into account the algebraic properties of the cryptosystem. Maude-NPA can reason about a wide range of cryptographic properties. However, some algebraic properties, and protocols using them, have been beyond Maude-NPA capabilities, either because the cryptographic properties cannot be expressed using its equational unification features or because the state space is unmanageable. In this paper, we provide a protocol transformation that can safely get rid of cryptographic properties under some conditions. The time and space difference between verifying the protocol with all the crypto properties and verifying the protocol with a minimal set of the crypto properties is remarkable. We also provide, for the first time, an encoding of the theory of bilinear pairing into Maude-NPA that goes beyond the encoding of bilinear pairing available in the Tamarin tool | es_ES |
dc.description.sponsorship | Partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32, by the Spanish Generalitat Valenciana under grant PROMETEO/2019/098, and by the US Air Force Office of Scientific Research under award number FA9550-17-1-0286. Julia Sapiña has been supported by the Generalitat Valenciana APOSTD/2019/127 grant | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.relation.ispartof | Computer Security - ESORICS 2020. 25th European Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September 14¿18, 2020, Proceedings, Part II | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Crypto protocol analysis | es_ES |
dc.subject | Diffie-Hellman | es_ES |
dc.subject | Exponentiation | es_ES |
dc.subject | Bilinear pairing | es_ES |
dc.subject | Protocol transformation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | An Optimizing Protocol Transformation for Constructor Finite Variant Theories in Maude-NPA | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-59013-0_12 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AFOSR//FA9550-17-1-0286//ADVANCED SYMBOLIC METHODS FOR THE CRYPTOGRAPHIC PROTOCOL ANALYZER MAUDE-NPA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PROMETEO%2F2019%2F098//DEEPTRUST/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTI2018-094403-B-C32-AR//RAZONAMIENTO FORMAL PARA TECNOLOGIAS FACILITADORAS Y EMERGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///APOSTD%2F2019%2F127//CONTRATO POSDOCTORAL GVA-SAPIÑA SANCHIS. PROYECTO: METODOS SIMBOLICOS AVANZADOS PARA EL ANALISIS DE SEGURIDAD DE PROTOCOLOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Aparicio-Sánchez, D.; Escobar Román, S.; Gutiérrez Gil, R.; Sapiña-Sanchis, J. (2020). An Optimizing Protocol Transformation for Constructor Finite Variant Theories in Maude-NPA. Springer Nature. 230-250. https://doi.org/10.1007/978-3-030-59013-0_12 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 25th European Symposium on Research in Computer Security (ESORICS 2020) | es_ES |
dc.relation.conferencedate | Septiembre 14-18,2020 | es_ES |
dc.relation.conferenceplace | Guildford, United Kingdom | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-59013-0_12 | es_ES |
dc.description.upvformatpinicio | 230 | es_ES |
dc.description.upvformatpfin | 250 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\418751 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Air Force Office of Scientific Research | es_ES |
dc.description.references | Maude-NPA manual v3.1. http://maude.cs.illinois.edu/w/index.php/Maude_Tools:_Maude-NPA | es_ES |
dc.description.references | The Tamarin-Prover Manual, 4 June 2019. https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf | es_ES |
dc.description.references | Al-Riyami, S.S., Paterson, K.G.: Tripartite authenticated key agreement protocols from pairings. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 332–359. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8_27 | es_ES |
dc.description.references | Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 447–533. Elsevier Science (2001) | es_ES |
dc.description.references | Baelde, D., Delaune, S., Gazeau, I., Kremer, S.: Symbolic verification of privacy-type properties for security protocols with XOR. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017, pp. 234–248. IEEE Computer Society (2017) | es_ES |
dc.description.references | Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus and ProVerif. Found. Trends Privacy Secur. 1(1–2), 1–135 (2016) | es_ES |
dc.description.references | Clavel, M., et al.: Maude manual (version 3.0). Technical report, SRI International, Computer Science Laboratory (2020). http://maude.cs.uiuc.edu | es_ES |
dc.description.references | Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_22 | es_ES |
dc.description.references | Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_38 | es_ES |
dc.description.references | Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equational theories in automated verification of stateful protocols. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–140. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_6 | es_ES |
dc.description.references | Escobar, S., Hendrix, J., Meadows, C., Meseguer, J.: Diffie-Hellman cryptographic reasoning in the Maude-NRL protocol analyzer. In: Proceedings of 2nd International Workshop on Security and Rewriting Techniques (SecReT 2007) (2007) | es_ES |
dc.description.references | Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the NRL protocol analyzer and its meta-logical properties. Theor. Comput. Sci. 367(1–2), 162–202 (2006) | es_ES |
dc.description.references | Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03829-7_1 | es_ES |
dc.description.references | Escobar, S., et al.: Protocol analysis in Maude-NPA using unification modulo homomorphic encryption. In: Proceedings of PPDP 2011, pp. 65–76. ACM (2011) | es_ES |
dc.description.references | Escobar, S., Meadows, C.A., Meseguer, J., Santiago, S.: State space reduction in the Maude-NRL protocol analyzer. Inf. Comput. 238, 157–186 (2014) | es_ES |
dc.description.references | Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012) | es_ES |
dc.description.references | Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: why is a security protocol correct? In: Proceedings of IEEE Symposium on Security and Privacy, pp. 160–171 (1998) | es_ES |
dc.description.references | Guttman, J.D.: Security goals and protocol transformations. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 130–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27375-9_8 | es_ES |
dc.description.references | Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://doi.org/10.1007/10722028_23 | es_ES |
dc.description.references | Kim, Y., Perrig, A., Tsudik, G.: Communication-efficient group key agreement. In: Dupuy, M., Paradinas, P. (eds.) SEC 2001. IIFIP, vol. 65, pp. 229–244. Springer, Boston, MA (2002). https://doi.org/10.1007/0-306-46998-7_16 | es_ES |
dc.description.references | Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-Hellman exponentiation. In: IEEE Computer Security Foundations, pp. 157–171 (2009) | es_ES |
dc.description.references | Küsters, R., Truderung, T.: Reducing protocol analysis with XOR to the XOR-free case in the horn theory based approach. J. Autom. Reason. 46(3–4), 325–352 (2011) | es_ES |
dc.description.references | Meadows, C.: The NRL protocol analyzer: an overview. J. Logic Program. 26(2), 113–131 (1996) | es_ES |
dc.description.references | Meier, S., Cremers, C., Basin, D.: Strong invariants for the efficient construction of machine-checked protocol security proofs. In: 2010 23rd IEEE Computer Security Foundations Symposium, pp. 231–245 (2010) | es_ES |
dc.description.references | Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992) | es_ES |
dc.description.references | Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program. 154, 3–41 (2018) | es_ES |
dc.description.references | Meseguer, J.: Generalized rewrite theories, coherence completion, and symbolic methods. J. Log. Algebr. Meth. Program. 110, 100483 (2020) | es_ES |
dc.description.references | Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for symbolic analysis of security protocols. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03829-7_6 | es_ES |
dc.description.references | Sasse, R., Escobar, S., Meadows, C., Meseguer, J.: Protocol analysis modulo combination of theories: a case study in Maude-NPA. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 163–178. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22444-7_11 | es_ES |
dc.description.references | Schmidt, B., Sasse, R., Cremers, C., Basin, D.A.: Automated verification of group key agreement protocols. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, pp. 179–194. IEEE Computer Society (2014) | es_ES |
dc.description.references | Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. J. Log. Algebraic Methods Program. 96, 81–110 (2018) | es_ES |
dc.description.references | TeReSe: Term Rewriting Systems. Cambridge University Press, Cambridge (2003) | es_ES |
dc.description.references | Yang, F., Escobar, S., Meadows, C.A., Meseguer, J., Narendran, P.: Theories of homomorphic encryption, unification, and the finite variant property. In: Proceedings of PPDP 2014, pp. 123–133. ACM (2014) | es_ES |