- -

Automated classification of crop types and condition in a mediterranean area using a fine-tuned convolutional neural network

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automated classification of crop types and condition in a mediterranean area using a fine-tuned convolutional neural network

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz Fernández, Luis Ángel es_ES
dc.contributor.author Almonacid-Caballer, J. es_ES
dc.contributor.author Crespo-Peremarch, P. es_ES
dc.contributor.author Recio Recio, Jorge Abel es_ES
dc.contributor.author Pardo Pascual, Josep Eliseu es_ES
dc.contributor.author Sánchez-García, Elena es_ES
dc.date.accessioned 2021-12-27T08:37:32Z
dc.date.available 2021-12-27T08:37:32Z
dc.date.issued 2020-09-02 es_ES
dc.identifier.issn 2194-9034 es_ES
dc.identifier.uri http://hdl.handle.net/10251/178915
dc.description.abstract [EN] Crop classification based on satellite and aerial imagery is a recurrent application in remote sensing. It has been used as input for creating and updating agricultural inventories, yield prediction and land management. In the context of the Common Agricultural Policy (CAP), farmers get subsidies based on the crop area cultivated. The correspondence between the declared and the actual crop needs to be monitored every year, and the parcels must be properly maintained, without signs of abandonment. In this work, Sentinel2 time series images and 4-band Very High Resolution (VHR) aerial orthoimages from the Spanish National Programme of Aerial Orthophotography (PNOA) were combined in a pre-trained Convolutional Neural Network (CNN) (VGG-19) adapted with a double goal: (i) the classification of agricultural parcels in different crop types; and (ii) the identification of crop condition (i.e., abandoned vs. non-abandoned) of permanent crops in a Mediterranean area of Spain. A total of 1237 crop parcels from the CAP declarations of 2019 were used as ground truth to classify into cereals, fruit trees, olive trees, vineyards, grasslands and arable land, from which 80% were used for training and 20% for testing. The overall accuracy obtained was greater than 93% both, at parcel and area levels. Olive trees were the least accurate crop, mostly misclassified with fruit trees, and young vineyards were slightly confused with cereal and arable land. In the assessment of crop condition, only 9.65% of the abandoned plots were missed (omission errors), and 7.21% of plots were over-detected (commission errors), having a 99% of overall accuracy from a total of 1931 image subset samples. The proposed methodology based on CNN is promising for its operational application in crop monitoring and in the detection of abandonments in the context of CAP subsidies, but a more exhaustive number of training samples is needed for extension to other crop types and geographical areas. es_ES
dc.description.sponsorship This research has been funded by the Conselleria d'Agricultura, Medi Ambient, Canvi Climàtic i Desenvolupament Rural, Generalitat Valenciana, throught the nominative line S847000. The authors also thank the Institut Cartogràfic Valencià for providing very high resolution aerial imagery data of the study area. es_ES
dc.language Inglés es_ES
dc.publisher ISPRS es_ES
dc.relation.ispartof XXIV ISPRS Congress, 2020 edition, Commission II es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Crop classification es_ES
dc.subject Convolutional neural network es_ES
dc.subject VGG-19 es_ES
dc.subject Crop abandonment es_ES
dc.subject Orthoimages es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Automated classification of crop types and condition in a mediterranean area using a fine-tuned convolutional neural network es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/isprs-archives-XLIII-B3-2020-1061-2020 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//S847000/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ruiz Fernández, LÁ.; Almonacid-Caballer, J.; Crespo-Peremarch, P.; Recio Recio, JA.; Pardo Pascual, JE.; Sánchez-García, E. (2020). Automated classification of crop types and condition in a mediterranean area using a fine-tuned convolutional neural network. ISPRS. 1061-1068. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1061-2020 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename XXIV Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS 2020) es_ES
dc.relation.conferencedate Agosto 31-Septiembre 02,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1061-2020 es_ES
dc.description.upvformatpinicio 1061 es_ES
dc.description.upvformatpfin 1068 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\418620 es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem