- -

FacTweet: Profiling Fake News Twitter Accounts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

FacTweet: Profiling Fake News Twitter Accounts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ghanem, Bilal Hisham Hasan es_ES
dc.contributor.author Ponzetto, Simone Paolo es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2021-12-27T08:37:41Z
dc.date.available 2021-12-27T08:37:41Z
dc.date.issued 2020-10-16 es_ES
dc.identifier.isbn 978-3-030-59429-9 es_ES
dc.identifier.uri http://hdl.handle.net/10251/178922
dc.description.abstract [EN] We present an approach to detect fake news in Twitter at the account level using a neural recurrent model and a variety of different semantic and stylistic features. Our method extracts a set of features from the timelines of news Twitter accounts by reading their posts as chunks, rather than dealing with each tweet independently. We show the experimental benefits of modeling latent stylistic signatures of mixed fake and real news with a sequential model over a wide range of strong baselines es_ES
dc.description.sponsorship The work of Paolo Rosso was partially funded by the Spanish MICINN under the research project MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31) es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Statistical Language and Speech Processing, 8th International Conference, SLSP 2020 es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;12379 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fake news es_ES
dc.subject Twitter accounts es_ES
dc.subject Factual accounts es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title FacTweet: Profiling Fake News Twitter Accounts es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-030-59430-5_3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Ghanem, BHH.; Ponzetto, SP.; Rosso, P. (2020). FacTweet: Profiling Fake News Twitter Accounts. Springer. 35-45. https://doi.org/10.1007/978-3-030-59430-5_3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 8th International Conference on Statistical Language and Speech Processing (SLSP 2020) es_ES
dc.relation.conferencedate Octubre 14-16,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-59430-5_3 es_ES
dc.description.upvformatpinicio 35 es_ES
dc.description.upvformatpfin 45 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\434395 es_ES
dc.description.references Aker, A., Kevin, V., Bontcheva, K.: Credibility and transparency of news sources: data collection and feature analysis. arXiv (2019) es_ES
dc.description.references Aker, A., Kevin, V., Bontcheva, K.: Predicting news source credibility. arXiv (2019) es_ES
dc.description.references Badawy, A., Lerman, K., Ferrara, E.: Who falls for online political manipulation? In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 162–168. ACM (2019) es_ES
dc.description.references Baly, R., Karadzhov, G., Alexandrov, D., Glass, J., Nakov, P.: Predicting factuality of reporting and bias of news media sources. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3528–3539 (2018) es_ES
dc.description.references Baly, R., Karadzhov, G., Saleh, A., Glass, J., Nakov, P.: Multi-task ordinal regression for jointly predicting the trustworthiness and the leading political ideology of news media. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2109–2116 (2019) es_ES
dc.description.references Boyd, R.L., et al.: Characterizing the Internet Research Agency’s Social Media Operations During the 2016 US Presidential Election using Linguistic Analyses. PsyArXiv (2018) es_ES
dc.description.references Choi, Y., Wiebe, J.: +/-EffectWordNet: sense-level lexicon acquisition for opinion inference. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1181–1191 (2014) es_ES
dc.description.references Clark, E.M., Williams, J.R., Jones, C.A., Galbraith, R.A., Danforth, C.M., Dodds, P.S.: Sifting robotic from organic text: a natural language approach for detecting automation on Twitter. J. Comput. Sci. 16, 1–7 (2016) es_ES
dc.description.references Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: BotOrNot: a system to evaluate social bots. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 273–274. International World Wide Web Conferences Steering Committee (2016) es_ES
dc.description.references Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W.W.: Tweet2Vec: character-based distributed representations for social media. In: The 54th Annual Meeting of the Association for Computational Linguistics (ACL), p. 269 (2016) es_ES
dc.description.references Dickerson, J.P., Kagan, V., Subrahmanian, V.: Using sentiment to detect bots on Twitter: are humans more opinionated than bots? In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), pp. 620–627. IEEE (2014) es_ES
dc.description.references Ghanem, B., Buscaldi, D., Rosso, P.: TexTrolls: identifying Russian trolls on Twitter from a textual perspective. arXiv preprint arXiv:1910.01340 (2019) es_ES
dc.description.references Ghanem, B., Cignarella, A.T., Bosco, C., Rosso, P., Rangel, F.: UPV-28-UNITO at SemEval-2019 Task 7: exploiting post’s nesting and syntax information for rumor stance classification. In: Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval), pp. 1125–1131 (2019) es_ES
dc.description.references Ghanem, B., Glavas, G., Giachanou, A., Ponzetto, S.P., Rosso, P., Pardo, F.M.R.: UPV-UMA at CheckThat! Lab: verifying Arabic claims using a cross lingual approach. In: Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, Lugano, Switzerland, 9–12 September 2019 (2019) es_ES
dc.description.references Ghanem, B., Rosso, P., Rangel, F.: An emotional analysis of false information in social media and news articles. ACM Trans. Internet Technol. (TOIT) 20(2), 1–18 (2020) es_ES
dc.description.references Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 877–880 (2019) es_ES
dc.description.references Graham, J., Haidt, J., Nosek, B.A.: Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96(5), 1029 (2009) es_ES
dc.description.references Im, J., et al.: Still out there: modeling and identifying Russian troll accounts on Twitter. arXiv preprint arXiv:1901.11162 (2019) es_ES
dc.description.references Karduni, A., et al.: Can you verifi this? Studying uncertainty and decision-making about misinformation using visual analytics. In: Twelfth International AAAI Conference on Web and Social Media (ICWSM) (2018) es_ES
dc.description.references Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: using mechanical turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 26–34 (2010) es_ES
dc.description.references Shao, C., Ciampaglia, G.L., Varol, O., Flammini, A., Menczer, F.: The spread of fake news by social bots. arXiv preprint arXiv:1707.07592, pp. 96–104 (2017) es_ES
dc.description.references Volkova, S., Shaffer, K., Jang, J.Y., Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on Twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL) (Volume 2: Short Papers), vol. 2, pp. 647–653 (2017) es_ES
dc.description.references Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018) es_ES
dc.description.references Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (EMNLP) (2005) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem