- -

Enhanced asymmetric blocked qPCR method for affordable detection of point mutations in KRAS oncogene

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced asymmetric blocked qPCR method for affordable detection of point mutations in KRAS oncogene

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lázaro-Zaragozá, Ana es_ES
dc.contributor.author Tortajada-Genaro, Luis Antonio es_ES
dc.contributor.author Maquieira Catala, Ángel es_ES
dc.date.accessioned 2021-12-30T19:27:08Z
dc.date.available 2021-12-30T19:27:08Z
dc.date.issued 2021-05 es_ES
dc.identifier.issn 1618-2642 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179192
dc.description.abstract [EN] An accurate genetic diagnostic is key for adequate patient management and the suitability of healthcare systems. The scientific challenge lies in developing methods to discriminate those patients with certain genetic variations present in tumor cells at low concentrations. We report a method called enhanced asymmetric blocked qPCR (EAB-qPCR) that promotes the blocker annealing against the primer-template hybrid controlling thermal cycling and reaction conditions with nonmodified oligonucleotides. Real-time fluorescent amplification curves of wild-type alleles were delayed by about eight cycles for EAB-qPCR, compared to conventional blocked qPCR approaches. This method reduced the amplification of native DNA variants (blocking percentage 99.7%) and enabled the effective enrichment of low-level DNA mutations. Excellent performance was estimated for the detection of mutated alleles in sensitivity (up to 0.5% mutant/total DNA) and reproducibility terms, with a relative standard deviation below 2.8%. The method was successfully applied to the mutational analysis of metastatic colorectal carcinoma from biopsied tissues. The determined single-nucleotide mutations in the KRAS oncogene (codon 12¿13) totally agreed with those obtained from next-generation sequencing. EAB-qPCR is an accurate cheap method and can be easily incorporated into daily routine to detect mutant alleles. Hence, these features are especially interesting to facilitate the diagnosis and prognosis of several clinical diseases. es_ES
dc.description.sponsorship The authors acknowledge the financial support received from the Generalitat Valenciana (GVA-FPI-2017 PhD grant), the Spanish Ministry of Economy and Competitiveness (MINECO project CTQ2016-75749-R), and European Regional Development Fund (ERDF) es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Analytical and Bioanalytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bioanalytical methods es_ES
dc.subject Allele-selective qPCR es_ES
dc.subject KRAS oncogene es_ES
dc.subject Mutation genotyping es_ES
dc.subject DNA variant detection es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Enhanced asymmetric blocked qPCR method for affordable detection of point mutations in KRAS oncogene es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00216-021-03229-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GVA-FPI-2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//CTQ2016-75749-R//BIOSENSORES HOLOGRAFICOS. PRUEBA DE CONCEPTO Y DEMOSTRACION EN APLICACIONES CLINICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Lázaro-Zaragozá, A.; Tortajada-Genaro, LA.; Maquieira Catala, Á. (2021). Enhanced asymmetric blocked qPCR method for affordable detection of point mutations in KRAS oncogene. Analytical and Bioanalytical Chemistry. 413(11):2961-2969. https://doi.org/10.1007/s00216-021-03229-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00216-021-03229-3 es_ES
dc.description.upvformatpinicio 2961 es_ES
dc.description.upvformatpfin 2969 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 413 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 33619642 es_ES
dc.relation.pasarela S\429717 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Chandler NJ, Ahlfors H, Drury S, Mellis R, Hill M, McKay FJ, et al. Noninvasive prenatal diagnosis for cystic fibrosis: implementation, uptake, outcome, and implications. Clin Chem. 2020;66:207–16. es_ES
dc.description.references Schmidt RLJ, Simon A, Popow-Kraupp T, Laggner A, Haslacher H, Fritzer-Szekeres M, et al. A novel PCR-based point-of-care method facilitates rapid, efficient, and sensitive diagnosis of influenza virus infection. Clin Microbiol Infect. 2019;25:1032–7. es_ES
dc.description.references Reck M, Rabe KF. Precision diagnosis and treatment for advanced non–small-cell lung cancer. N Engl J Med. 2017;377:849–61. es_ES
dc.description.references Vargas DY, Kramer FR, Tyagi S, Marras SAE. Multiplex real-time PCR assays that measure the abundance of extremely rare mutations associated with cancer. PLoS One. 2016;11:e0156546. es_ES
dc.description.references Allegra CJ, Rumble RB, Hamilton SR, Mangu PB, Roach N, Hantel A, et al. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion. J Clin Oncol. 2016;34:179–85. es_ES
dc.description.references Das V, Kalita J, Pal M. Predictive and prognostic biomarkers in colorectal cancer: a systematic review of recent advances and challenges. Biomed Pharmacother. 2017;87:8–19. es_ES
dc.description.references Khodakov D, Wang C, Zhang DY. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches. Adv Drug Deliv Rev. 2016;105:3–19. es_ES
dc.description.references Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:289–320. es_ES
dc.description.references Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR, et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagnostics. 2010;12:425–32. es_ES
dc.description.references Milbury CA, Li J, Makrigiorgos GM. PCR-based methods for the enrichment of minority alleles and mutations. Clin Chem. 2009;55:632–40. es_ES
dc.description.references Lin CC, Huang WL, Wei F, Su WC, Wong DT. Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer. Expert Rev Mol Diagn. 2015;15:1427–40. es_ES
dc.description.references Strohmeier O, Laßmann S, Riedel B, Mark D, Roth G, Werner M, et al. Multiplex genotyping of KRAS point mutations in tumor cell DNA by allele-specific real-time PCR on a centrifugal microfluidic disk segment. Microchim Acta. 2014;181:1681–8. es_ES
dc.description.references Markou A, Tzanikou E, Ladas I, Makrigiorgos GM, Lianidou E. Nuclease-assisted minor allele enrichment using overlapping probes-assisted amplification-refractory mutation system: an approach for the improvement of amplification-refractory mutation system-polymerase chain reaction specificity in liquid biopsies. Anal Chem. 2019;91:13105–11. es_ES
dc.description.references Zhang H, Song J, Ren H, Xu Z, Wang X. Detection of low-abundance KRAS mutations in colorectal cancer using microfluidic capillary electrophoresis-based restriction fragment length polymorphism method with optimized assay conditions. PLoS One. 2013;8:54510. es_ES
dc.description.references Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003–5. es_ES
dc.description.references Li J, Wang L, Mamon H, Kulke MH, Berbeco R, Makrigiorgos GM. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med. 2008;14:579–84. es_ES
dc.description.references Castellanos-Rizaldos E, Milbury CA, Guha M, Makrigiorgos GM. COLD-PCR enriches low-level variant DNA sequences and increases the sensitivity of genetic testing. Molecular Diagnostics for Melanoma: Methods and Protocols, Methods in Molecular Biology. 2014. p. 623–39. es_ES
dc.description.references Briones C, Moreno M. Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development. Anal Bioanal Chem. 2012;402:3071–89. es_ES
dc.description.references Huang JF, Zeng DZ, Duan GJ, Shi Y, Deng GH, Xia H, et al. Single-tubed wild-type blocking quantitative PCR detection assay for the sensitive detection of codon 12 and 13 KRAS mutations. PLoS One. 2015;10:1–23. es_ES
dc.description.references Kim HR, Lee SY, Hyun DS, Lee MK, Lee HK, Choi CM, et al. Detection of EGFR mutations in circulating free DNA by PNA-mediated PCR clamping. J Exp Clin Cancer Res. 2013;32:50. es_ES
dc.description.references Zhang S, Chen Z, Huang C, Ding C, Li C, Chen J, et al. Ultrasensitive and quantitative detection of: EGFR mutations in plasma samples from patients with non-small-cell lung cancer using a dual PNA clamping-mediated LNA-PNA PCR clamp. Analyst. 2019;144:1718–24. es_ES
dc.description.references Tolnai Z, Harkai Á, Szeitner Z, Scholz ÉN, Percze K, Gyurkovics A, et al. A simple modification increases specificity and efficiency of asymmetric PCR. Anal Chim Acta. 2019;1047:225–30. es_ES
dc.description.references Jia Y, Sanchez JA, Wangh LJ. Kinetic hairpin oligonucleotide blockers for selective amplification of rare mutations. Sci Rep. 2014;4:1–8. es_ES
dc.description.references Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33:692–705. es_ES
dc.description.references Peterson AW. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 2001;29:5163–8. es_ES
dc.description.references Falcomatà C, Schneider G, Saur D. Personalizing KRAS-mutant allele–specific therapies. Cancer Discov. 2020;10:23–5. es_ES
dc.description.references McEvoy AC, Wood BA, Ardakani NM, Pereira MR, Pearce R, Cowell L, et al. Droplet digital PCR for mutation detection in formalin-fixed, paraffin-embedded melanoma tissues: a comparison with sanger sequencing and pyrosequencing. J Mol Diagnostics. 2018;20:240–52. es_ES
dc.description.references Milbury CA, Li J, Makrigiorgos GM. Ice-COLD-PCR enables rapid amplification and robust enrichment for low-abundance unknown DNA mutations. Nucleic Acids Res. 2011;39:e2. es_ES
dc.description.references Xiang Z, Wan R, Zou B, Qi X, Huang Q, Kumar S, et al. Highly sensitive and specific real-time PCR by employing serial invasive reaction as a sequence identifier for quantifying EGFR mutation abundance in cfDNA. Anal Bioanal Chem. 2018;410:6751–9. es_ES
dc.description.references Huang T, Zhuge J, Zhang WW. Sensitive detection of BRAF V600E mutation by amplification refractory mutation system (ARMS)-PCR. Biomark Res. 2013;1:1–6. es_ES
dc.description.references Matsuda K. PCR-based detection methods for single-nucleotide polymorphism or mutation: real-time PCR and its substantial contribution toward technological refinement. Adv Clin Chem. 2017;80:45–72. es_ES
dc.description.references Lázaro A, Yamanaka ES, Maquieira Á, Tortajada-Genaro LA. Allele-specific ligation and recombinase polymerase amplification for the detection of single nucleotide polymorphisms. Sensors Actuators B Chem. 2019;298:126877. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem